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M-OSRP 2007 Introduction and Preface

This year has been another positive and productive year for M-OSRP. In this introduction to the
2007 Annual Report, we provide an executive summary of the program, from both the broad strate-
gic goals and methods being pioneered, developed and tested, as well as progress and highlights
and plans within specific projects. We begin by describing the origin of seismic E & P challenges.
Then we note how these issues are addressed, in general, and what and how M-OSRP is pursuing,
progressing, providing and contributing towards a comprehensive and effective response. We start
with the origin of seismic challenges.

ALL SEISMIC METHODS MAKE ASSUMPTIONS AND ASSUMPTION SAT-
ISFACTION ALIGNS WITH ALGORITHMIC RELIABILITY, PREDICTABIL-
ITY AND EFFECTIVENESS

We recognize that: (1) seismic exploration methods have an established and strong track-record of
effectiveness, and that effectiveness depends upon the satisfaction of assumptions and prerequisites
behind seismic techniques and algorithms, and (2) when those same algorithmic prerequisites and
assumptions are violated then seismic methods can and will fail and result in dry hole drilling.

TYPES OF ASSUMPTIONS

For our purposes, we find it useful to distinguish different types of algorithmic assumptions and
requirements as follows: (1) assumptions on adequate types and extent of data collection, extrap-
olation and interpolation, (2) assumptions on adequate compute power for acceptable processing
turn-around time, and (3) innate algorithmic assumptions or requirements. An innate algorithmic
assumption is one that is not satisfied or resolvable by a more complete acquisition and adequate
compute power.

Simple examples of innate imaging challenges are:(1) the inability under complex subsurface condi-
tions, with current velocity analysis methods, to determine an adequate velocity model, given ideal
acquisition and adequate compute capability, and (2) the inability to accurately image beneath a
perfectly provided velocity model when a combination of lateral velocity and variable dip are in-
volved in the overburden and/or if the geometry of the reflector is complex, corrugated and rapidly
varying.

1



Introduction MOSRP07

ASSUMPTION VIOLATION PRODUCES SEISMIC ALGORITHM FAILURE
AND SEISMIC EXPLORATION CHALLENGES

Seismic processing algorithm assumption violations are behind all seismic processing breakdown
and exploration challenges. M-OSRP, a research program designed to address pressing seismic
challenges needs to begin with a clear, frank and forthright examination of the origin of these
pitfalls and obstacles, and, in general, how that type of issue can be addressed. We are all aware
of, and celebrate, and benefit from, the tremendously successful history of seismic processing and
seismic exploration, and we owe a great debt to those that brought that capability to the petroleum
industry. We also recognize that all processing methods make assumptions, and we need to recognize
the flaws and pitfalls, as well, thereby enabling researchers to define and focus and improve upon
our current seismic capability.

There is danger in defining the problem only in terms of the issues we wish to examine, or know how
to address. The focus on acquisition and compute issues, often dominates the discussion, or the
move to non-seismic techniques becomes more interesting, anything but examining and addressing
the innate seismic processing assumptions and limitations.

HOW TO ADDRESS CHALLENGES: FIGURE OUT HOW TO EITHER SAT-
ISFY OR AVOID VIOLATED ASSUMPTIONS

We recognize that there are two reasonable ways and strategies to respond and address seismic
challenges: (1) find a way to remove the prerequisite violation by directly satisfying the algorithm’s
need, or developing a new way to satisfy the previously violated assumption or requirement, or
(2) develop a fundamentally new processing concept and method that produces the original sought
after processing goal while entirely avoiding the current processing algorithm’s need for a difficult
or impossible to satisfy requirement or assumption. The goal is to provide a new contribution to
the tool box of techniques to allow seismic capability to navigate a geologic configuration and to
access a type of exploration play that is either currently precluded and inaccessible or is accessible
but inadequately defined.

HOW M-OSRP ADDRESSES SPECIFIC CHALLENGES

In the Mission-Oriented Seismic Research Program, we adopt one or the other of these challenge
response strategies depending on the specific issue we are addressing. For data acquisition, in-
terpolation, and extrapolation our general inclination and response is to remove the prerequisite
violation, and satisfy the demand of wave theoretic processing through: (1) demonstrating the E
& P cost benefit and added-value that a more complete acquisition would provide, and (2) devel-
oping more effective methods for data extrapolation and interpolation (please see report by A.C.
Ramirez et al). However, we also recognize the near term practical reality that doesnt expect as
standard practice a fully 3D data collection, e.g., we anticipate limited coverage and sampling in
the cross-line direction, and we therefore develop distinct imaging algorithms that are designed to
provide the benefit of our new depth imaging concepts with either: (1) a full 3D acquisition, or (2)

2



Introduction MOSRP07

the currently standard, more common and less complete 3D acquisition. To exemplify the latter
type of algorithmic accommodation a new water speed migration required as the first step in the
inverse series imaging algorithms (Fang Liu), that is a wave theoretic FK Stolt migration in the
in-line direction, but is an aperture compensated Kirchhoff migration in the cross-line direction,
and can be found in a paper in this Annual Report (Zhiqiang Wang et al) .

INNATE SEISMIC ALGORITHMIC ASSUMPTIONS: SATISFYING OR AVOID-
ING

For innate seismic processing algorithm assumptions, we suggest and encourage first trying to
satisfy the needs of current imaging methods. If that fails, or if the assumptions themselves are
too restrictive for situations of interest (e.g., assuming a 1D earth) , we suggest developing new
algorithms with less restrictions and less daunting assumptions. We recognize that complex media
and interfaces, (and sometimes with not so complicated subsurface conditions), can cause havoc
with many mainstream seismic processing algorithm prerequisites, demands and requirements. The
innate set of algorithmic limitations needs to be recognized and addressed simultaneously with
acquisition and compute demands, to have a realistic and effective strategy for addressing the
actual issues behind seismic exploration challenges that we face in the petroleum industry.

THE INVERSE SCATTERING SERIES AND AVOIDING THE NEED FOR
ANY SUBSURFACE INFORMATION IN ALL SEISMIC PROCESSING AL-
GORITHMS

The inverse scattering series represents the potential to achieve all processing goals directly in
terms of recorded data, and without any need, in principle or practice, to provide any subsurface
information, whatsoever. Therefore, it is natural that we would look to the inverse scattering
series to provide new algorithms that avoid the need for subsurface information and can provide
new and effective methods, to fill that gap when conventional methods fail when their required
subsurface information is beyond our reach. For example, given an accurate velocity model the
classic downward continuation and imaging concept directly produces a structure map. The inverse
scattering series states that the same accurate structure map is able to be directly output from an
algorithm that only inputs the recorded data.

We have become familiar with this type of magical behavior in the removal of free surface multiples.
Data with primaries, internal multiples and free surface multiples is input, and data with primaries
and internal multiples and without free surface multiples is output. Absolutely nothing about the
earth is required as input, and nothing about the earth is ever determined, approximated, needed,
used or output, implicitly or explicitly, and without searching, model matching or optimization.
Data goes in with free surface multiples and data comes out without free surface multiples. That’s
it.

There are different ways to derive the free surface multiple removal algorithm, and among these
different ways, one derivation comes from the inverse scattering series. However, the unique and
critically important message delivered by the inverse scattering series, and by only the inverse

3



Introduction MOSRP07

scattering series, is that ALL processing goals are achievable in the same way as the free surface
multiples are removed, and can be achieved directly in terms of data, and without the need for
subsurface information. Among other processing goals that have the potential of being achieved
directly in terms of data, and without subsurface information, are: internal multiple removal, depth
imaging, non-linear direct target identification and Q compensation without Q. Each of these goals
has a project within M-OSRP and this report describes the progress and plans, for each of these
initiatives. We also have launched a new project specific to on-shore issues and application, and a
first report by Shih-Ying Hsu et al is in this Annual Report.

Since the free surface multiple removal algorithm is a simplest realization of the potential of the in-
verse scattering series, and serves as a template for more ambitious processing goals, understanding
how it operates is a central lesson for both achieving other goals, and understanding how the ISS
differs and stands apart in terms of its promise and potential from all other comprehensive high
ambition processing and inversion strategies and approaches.

The methods and algorithms that derive from the inverse scattering series are neither mystical
nor mysterious. They simply use the seismic recorded data, and the information contained within
that entire set of events in a collective rather than in an isolated event fashion. In general, for
example, if a method for predicting multiples or depth imaging primaries, has adequate subsurface
information to separate or model those events, then the time of a single multiple is sufficient to
remove it, and the time of a single primary is sufficient to directly image it correctly in depth. The
inverse scattering series(ISS) agrees with that conclusion.

However, in the absence of subsurface information the inverse scattering series assumes another
attitude and sits on a higher superseding perch, and states that achieving goals that with subsurface
information operate on an isolated event, now require a collective interaction of events in your data,
with the use of both the amplitude and time of those events to achieve progressing objectives. The
amplitude of the event means the amplitude of what you record when the event arrives in your
phone, removing only the source signature in water.

Please note that it is definitely not requiring reflection coefficient amplitude or anything like a
reflection coefficient amplitude associated with primary events. That collective amplitude and phase
information is what the inverse scattering free surface multiple removal method requires, and all
other seismic objectives that derive from the inverse scattering series operate in that same manner.
The success of the inverse scattering free surface multiple removal algorithm, (e.g., SRME) speaks
to that event phase and amplitude information being directly or indirectly achievable in practice,
and that is the one and the same source signature needed for all ISS applications for removing free
surface and internal multiples (F. A. Araujo et al, A. C. Ramirez et al), direct Q compensating
primaries without knowing or determining Q (Kris Innanen and Jose Eduardo Lira et al), and depth
imaging primaries, (S. Shaw, D. Foster, K. Matson, F. Liu, K. Innanen, J. Zhang, A. Ramirez, S.
Jiang and Z. Wang et al) and non-linear direct AVO (H. Zhang and Xu Li).

Progress for these projects is described in this Annual Report and will be presented at the Annual
Meeting.

It is worth noting that the free surface multiple removal algorithm doesnt change i.e., the code
doesnt change in any way, not a slightest change in even one single line, if you happen to decide
the earth is acoustic, elastic, anisotropic or anelastic. The method does not care about subsurface
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properties, and it doesnt even care about the type of earth model you imagine is governing sub-
surface wave propagation in the real earth. That is what we mean when we say an algorithm is
model-type independent and that is a truly amazing property, already shared by the inverse scat-
tering free surface and internal multiple removal codes pioneered by P. M. Carvalho, F. V. Araujo,
and A. C. Ramirez, and coded and documented by S. Kaplan, E. Otnes, A. C. Ramirez and K. A.
Innanen and distributed in M-OSRP. The 3D free surface code is being tested and evaluated by
Innanen, and Kaplan, and a team at ConocoPhillips led by Simon Shaw and Paul Valasek prior to
distribution to our sponsors (please see the status report by Innanen et al).

Now please try to imagine an accurate depth imaging algorithm with that shared property. Thats
what we are after, and thats one of our goals. We have come part way towards that prize and
the first 3D field data tests with Fang Liu’s closed form imaging algorithm are planned, separately
with Scott Morton at Hess (with data jointly owned by Hess, BHP and Repsol) and Doug Foster
and Fernanda Araujo at ConocoPhillips. These 3D field data imaging tests are scheduled to begin
this summer. We are enormously grateful and appreciative for this invaluable sponsor support on
progressing the testing and distribution of the 3D Free Surface Multiple code and the 3D imaging
algorithms. Those test results will be shared with all sponsors, and will be included in a technical
note and subsequent code distribution.

3D CLOSED FORM IMAGING PLUS NEW AND FURTHER AND EXCLU-
SIVELY MULTI-DIMENSIONAL IMAGING CAPTURE

In this report and in our presentations: (1) Fang Liu will present his three D closed form imaging
algorithm, and separately his new and further capture beyond his latter closed form, now addressing
distinct multi-dimensional imaging challenges that have no counterpart in a one dimensional earth,
and (2) Shansong Jiang and A. B. Weglein will describe further developed concepts and algorithms
to move the Fang Liu imaging capture to more complicated earth models and realism and towards
model type independence. Early tests of Fang Liu’s new and exclusively multi-D imaging capture
will be shown at the Annual Meeting, May 28, 29.

Please note that Fang Liu’s new imaging capture is no longer computer time free, and M-OSRP
will be requiring and arranging for significantly increased compute power, with much appreciated
assistance and support from Tom McClure, Michael Perrone and Earl Dodd of IBM, and Nicola
Bienati and the M-OSRP HPC Committee. The anticipated M-OSRP research need for a bigger
boat (computer) for our imaging research has definitely arrived. A set of tests for the new imaging
capture is planned for the coming year.

This inverse scattering series can be counterintuitive, in general, and is especially so for depth
imaging without the velocity. It runs opposite to conventional established wisdom and the entire
evolution of seismic imaging, where increased capability and completeness in the imaging method
and migration algorithm always had an immediate and concomitant increase in the demand for more
accurate velocity information. In addition to the need for adequate subsurface information, such as
velocity, required with all current leading-edge depth imaging algorithms, there are also additional
innate assumptions and limitations for current imaging methods themselves, given perfect velocity
information, that the inverse scattering series also has the potential to address.
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DOES SCATTERING THEORY EVER AGREE WITH ANYONE OR ANY-
THING THAT IS REASONABLE, INTUITIVE AND THAT WE ALREADY
FIRMLY UNDERSTAND, BELIEVE AND CAN RIGOROUSLY PROVE AND
KNOW TO BE ABSOLUTELY TRUE?

Scattering theory agrees with all modeling methods. It agrees that a precise description of each
and every detail of all subsurface physical properties is essential and unavoidable to generate a
wave-field inside and on the boundary of any medium, and that precise information is needed to
create and predict primaries and multiples.

Linear approximate forward scattering and linear approximate inverse scattering, called the Born
and inverse Born approximation, respectively, each assume that to approximately model data, or
to approximately invert data, requires an adequate estimate of medium properties, as well. It
also typically assumes the input data consists of only primaries. This latter linear approximate
concept is behind all current migration and migration-inversion methods, regardless of their wave
or asymptotic nature, and underpins the industry common wisdom and dogma that to determine
depth requires an adequate estimate of velocity. That need today can be either direct or indirect
through a proxy or other indirect expression of that need. It is somewhat disingenuous for methods
that seek a proxy or assumed aligned objective to an input velocity model, and hence in principle
need a velocity, to label themselves as velocity independent depth imaging. The approximate linear
inverse scattering framework behind current imaging methods also explains the common view that
migration and modeling are the flip sides of the same coin, and hence share the same requirements.
Furthermore, if you go further in the forward scattering series to more accurately model data, you
still need the exact subsurface properties to precisely predict primaries and multiples.

The refrain, din and chorus on the need for subsurface information to directly achieve seismic pro-
cessing objectives comes up against a totally new and alternate viewpoint and compelling mathe-
matical physics logic only when moving beyond a truncated approximate first term inverse scatter-
ing theory, or an iterative linear inverse of that first term, and when we examine and understand
the entirety of the inverse scattering series, and specifically the message contained in the terms
beyond the first and linear term. The input data can be primaries and all free surface and internal
multiples and the unique and delivered message is that all processing objectives concerned with re-
moving multiples, and for primaries , Q compensating, depth imaging and inversion can be achieved
directly in terms of data and without actual physical properties that govern wave propagation in
the subsurface being required or needed or predicted in principle and practice. We emphasize the
words ‘in principle’ as a key and critical message. The need for a velocity model to directly and
accurately depth image seismic data from the ISS is non-existent. The ISS imaging methods are
direct and no optimization, search algorithms , or proxies, or stacking over weighted trajectories or
flat common image gather criteria are ever called upon or needed. Direct, period.

The inverse scattering series has this unique message, and that is not a message shared with any
other current processing methodology including all other non-linear methods such as : iterative
linear inversion, model-matching, Bremmer series, and the feedback loop techniques. It represents
and remains the unique promise and potential of the inverse scattering series.
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DIRECT AND INDIRECT INVERSION: THE FUNDAMENTAL NEED FOR
MULTI-COMPONENT ACQUISTION FOR TARGET IDENTIFICATION

The idea behind indirect methods begins by assuming that you have no direct way or path to
solve a problem of interest. Therefore we will find an indirect aligned problem whose solution will
eventually end up equivalent to a direct approach. This is not a bad idea, and there are times
when it might be appropriate and necessary. For example, in Carvalho and Weglein (1994) there
was a global search simulated annealing method to minimize energy for the purpose of estimating a
wavelet, not readily available by other means, and necessary for the inverse scattering free surface
multiple removal algorithm.

However, there are dangers in model matching or other indirect optimization approaches. There is
great danger that the aligned objective is not really aligned, or adequate or accurate or sufficient.
There are also a group of techniques around generalized inverse methods that have the sense of a
method looking for a problem, or of the child with a hammer thinking that everything looks like
a nail. The danger and problem is when searching and jumping around error surfaces and using
search engine computational techniques becomes a push-button reflexive replacement for thinking
and the fundamental physics of wave forward and inverse processes. The danger is often greatest
when the application seems to be most ‘reasonable’. To illustrate: consider PP data and non-linear
AVO. Given PP data at a sufficient set of angles, it would seem reasonable to solve for linear
estimates of changes in physical properties, and perhaps iteratively update. Or one might think
of setting the Rpp equal to an exact Zoeppritz form in terms of those changes in earth properties,
and perform a global search of values of those latter changes that would match the reflection data.
What could be wrong?

The direct inversion of the elastic inverse scattering series, see e.g., the K. Matson and H. Zhang
theses, communicates that PP data is fundamentally and intrinsically inadequate to achieve the
above stated goal. PP data alone is as inadequate to achieve that goal from a fundamental and
elementary physics point of view, as a single stacked trace can simultaneously and reliably invert
for velocity and density as a function of depth. You could certainly search around and iteratively
linear inverse, and find sensitivity matrices and optimize for a match. The searching and matching
and iterating with PP data will never tell you have the wrong framework and starting point. The
fundamental and clear meaning of an approximation linear in the data, needs to begin with clarity
on what data you are talking about. The data needs to first be adequate to determine the actual
sought after material property changes, and only a direct method can provide and communicate
that data need. The directness of the elastic target identification solution provided only by the
inverse scattering series, not only gives explicit direct forms to output those subsurface material
properties, but perhaps as important tells you for the first time and unambiguously and precisely
what data types will be needed to satisfy the need of the direct solution. That is what direct inverse
provides. It takes a non-linear direct solution to define the very meaning of linear inverse.
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A TERM IN THE SERIES ACTS ONLY AFTER IT DETERMINES THAT
ITS SERVICE IS NEEDED AND CALLED UPON BY THE SPECIFIC DATA
SET

There are other amazing and for me very impressive qualities that the inverse scattering series
possesses, among them the ability to determine for a given data set whether a certain issue is
present and will need to be addressed. The first term in a task specific subseries decides before it
acts whether there is a need, and if there is no need it shuts down, and signals to those higher terms
within that task specific subseries that they can relax and that this specific data set doesnt have
that type of problem. On the other hand, if the first term in a task specific subseries determines
that the data contains a certain issue, then it lights up, and alerts all of those beyond the first that
their services will be called upon. That is amazing. We explicate and illustrate the latter property
in our reports, SEG Abstracts and papers and in presentations at the meeting. The intelligence and
data specific purposefulness, and certain model type independent goals and algorithms, all derives
from the explicit inverse scattering series, and how it represents the not so simple way that changes
in earth properties relate to changes in a wave-field.

FURTHER IMPORTANT ITEMS TO NOTE

Among other themes that are within this report and will be presented at our Annual Meeting are:

1. There is a difference between recognizing a specific potential and promise within the ISS and
harvesting and capturing that potential.

2. Complex is complex, and imaging beneath a complex overburden and/or at a complex target
is and remains that, complex. The ISS says it can replace the conventional simple imaging
formula with a required complex ingredient (adequate complex overburden) with a complex
sum with a simple ingredient (homogeneous overburden). The relevant question is achievabil-
ity and effectiveness and impact. Closed forms for ISS imaging to-date provide much value
and run at lightning speed, newer capture will need compute power.

3. The deterministic direct methods that we pursue have limits and requirements, and there is
always reality beyond what we include in our physics, and the latter cannot be ignored if
you are seeking practical solutions. Indirect methods are often employed in an attempt to
accommodate the reality that is outside of our current physics model (e.g., cable feathering,
instrument response, rough seas, ambient noise, and on-shore near surface variability), and
we continue to progress that critical aspect of capability (e.g., recent Geophysics paper by
Kaplan and Innanen). We encourage new criteria for adaptive methods that enhance and
complement (rather than sometimes running at cross-purposes to) the deterministic methods
they are meant to support.

4. We risk-manage our portfolio of objectives and manage expectations, e.g., our depth image
will produce an accurate structure map, but not for migration-inversion at this juncture, and
we progress and aim our non-linear direct AVO for development application. We provide an

8



Introduction MOSRP07

umbrella to protect and nurture newer projects and ideas, e.g., the embryonic Q compensation
without Q research, with a set of other projects that allow for different schedules of reporting
and deliverables.

5. We warmly congratulate Drs. Adriana C. Ramirez and Jingfeng Zhang for completing
their PhDs this past year, and wish them all the best of success in their careers at West-
ernGeco/Schlumberger and BP, respectively. They will present summaries of their important
landmark contributions at the Annual Meeting.

6. The inverse scattering series does not provide methods to satisfy its own deterministic pre-
requisites, and requirements, such as deghosted data, a source signature, and adequate sur-
face measurements. Green’s theorem comes to the rescue, and Jingfeng Zhang and Adriana
Ramirez will speak on those issues and their pioneering developments. A report is included
here by Adriana C. Ramirez et al that provides a way to understand interferometric princi-
ples and theorems and virtual sources, and spurious multiples as all contained and derivable
approximations or consequences within the Green’s theorem (1828) framework. That Greens
theorem framework also allows Ramirez to pursue and provide a systematic set of improve-
ments that are compared with various interferometric algorithms for data extrapolation.

In summary: This has been another good and exciting year with much progress to report. We will
be introducing our new, capable and energized group of graduate students to you, at the Annual
Meeting, and they will each say a few words on the research projects they are pursuing. I look
forward to seeing you at the Annual Technical Meeting.

Thanks for your encouragement and support.

Best regards,
Art

Arthur B. Weglein
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Green’s theorem as a comprehensive framework for seismic interferometry,
data reconstruction and regularization, redatuming, wavefield separation and
wavelet estimation

A. C. Ramı́rez†and A. B. Weglein
†Presently at WesternGeco

Abstract

It would be almost impossible to write a tutorial on Green’s theorem (Green, 1828) that in-
cludes all its different applications in seismic exploration. Almost every single step in the set
of methods and processing technology used in exploration seismology to process and obtain
information from recorded data has been affected or influenced by Green’s theorem whether or
not it is explicitly acknowledged. Among the list of seismic processes that can be related to
Green’s theorem it is easy to find wavelet estimation, wavefield separation, multiple elimination,
wavefield reconstruction, regularization, redatuming, imaging, wavefield deconvolution, deghost-
ing, and interferometry. This tutorial aims to provide an overview of a set of Green’s theorem
based methods for addressing challenges in seismic exploration. In particular, the tutorial will
focus on wavefield retrieval, using measurements at a given surface in a marine experiment.
Wavefield reconstruction, interpolation and extrapolation methods based on Green’s theorem
are remarkable in their flexibility and ability of providing added value such as statics correction,
regularization, wavefield separation and multiple removal. In the last decade, there have been
an ever increasing attention within the energy industry and its concomitant representation in
the published literature to methods dealing with wavefield retrieval through interferometry or
virtual source techniques and their applications to different seismic exploration problems. This
attention has brought about a renewed interest in Green’s theorem because all the different
approaches to what is called seismic interferometry (e.g.,techniques that synthesize the field
propagating between two receivers by correlating the signals recorded at these two receivers)
can be derived from this single theorem and unifying framework. In this tutorial, a derivation
and explication of the limitations of interferometric techniques, as approximations to Green’s
theorem, will be provided. A definitive statement of the comprehensive framework and um-
brella that Green’s theorem provides to interferometry will be given, showing that the latter
new principles are really directly understandable as simple approximations to Green’s theorem.
The artifacts and errors produced by these approximations will also be explained, and methods
to improve upon the output of interferometry will be provided. The latter methods recognize
their foundation on Green’s theorem, and, thus, have a secure and firm mathematical-physics
cornerstone to generate and recognize the assumptions behind distinct approximate solutions,
and to guide the search for every more accurate and effective techniques

Introduction

Several of the subjects which concern the broad field of seismic exploration can be, and have been,
solved by the application of Green’s theorem using appropriate assumptions and specific functions
such as Green’s functions and measured values of pressure and/or elastic wavefields. Applications
of Green’s theorem,i.e., Green’s first and second identities, are known by many names: reciprocity
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theorem, Kirchhoff integral, Helmholtz-Kirchhoff integral, etc. Extensions of the theorem are rec-
ognized as e.g., Betti’s and Rayleigh-Betti’s reciprocity theorems. With all these names, confusion
of the human being behind this great mathematical breakthrough is easily achieved. Geophysicist
might be interested on knowing that these tools are the work of a self-taught mathematical genius
with a premature death: George Green, the miller of Nottingham (Schwinger, 1993). As in many
other scientific fields, seismic exploration utilizes the work of Green widely and plentiful. How-
ever, there are very few specific or direct references to George Green and his landmark work: An
Essay on the Applications of Mathematical Analysis to the Theory of Electricity and Magnetism
published by subscription in 1828. In this tutorial, we would like to acknowledge some of Green’s
contributions to seismic exploration, and, hence, to the betterment of our daily lives.

Green’s theorem is one of the many jewels found in Green’s original essay. Green’s theorem provides
a way of thinking, and a mathematical-physics framework that transcends the sum total of all the
specific applications of that theorem to-date. To begin we state that a complete history of Green’s
theorem, and its immense scientific and technical contribution is far beyond the scope and purpose
of this paper. This tutorial will merely focus on a few general themes and contributions within that
very broad topic of Green’s theorem. The selected contributions directly relate to the parochial
interests of this tutorial: wavefield reconstruction or retrieval and interferometry.

In the next section Green’s theorem will be introduced, and an overview of the impact of Green’s
theorem on seismic exploration will be provided.

Waves, and the information they contain: The Isaac Newton, Karl F. Gauss and
George Green legacy for understanding and progressing seismic interferometry
and wavefield retrieval

Seismic waves are widely used to study the Earth’s structure and material properties by means
of measurements on, or close to, its surface. Seismic waves can be produced through seismic
experiments in which a source, such as a dynamite shot, generates acoustic or elastic vibrations
that travel into the Earth, propagate through the subsurface and return to the surface to be
recorded or acquired as seismic data. The goal of seismic exploration is to locate hydrocarbon (oil
and gas) reservoirs in the Earth’s subsurface in economically producible quantities. Hence, seismic
exploration makes inferences from surface recorded wavefield measurements that are relevant and
useful for locating and producing hydrocarbons.

The wavefield character at any point in space and at any instant of time, is determined by the
entirety of experiences it has undergone, from the moment it was created at the source, until the
time it is recorded. The wavefield due to a localized source is measured during a predefined length
of time. During that period of time, there is a specific extent of the subsurface properties that
contribute to the wave character measured at the receivers. The part of the subsurface that was
experienced by the recorded part of the wavefield is restricted to a volume in space determined
by how far in the subsurface the wave could reach, get reflected, and return to be recorded at the
measurement surface during that time length; the volume in space is also governed by the Earth’s
subsurface properties and by causality. In the temporal frequency domain, the properties of the
recorded wavefield depend on all subsurface properties.
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Given that the seismic exploration/processing purpose is to extract subsurface properties from
recorded data, it is natural to examine and to develop methods that relate surface recorded mea-
surements to subsurface properties. There are three central purposes in this tutorial:
(1) Provide some sense of the breadth and scope of Green’s theorem for addressing type of under-
taking.
(2) Show how Green’s theorem provides not only a comprehensive framework for all seismic inter-
ferometry techniques, but also a platform for developing a systematic set of improvements upon
current methods and practice.
(3) Show how Green’s theorem can be used to perform tasks of wavefield retrieval and wavefield
separation.

Green’s theorem is a critically important cornerstone for seismic theory, concepts and algorithms
with a distinct contribution that supersedes the abilities of causality and linear superposition. It
can match and go beyond the limits of causality and superposition constructs in wavefield theory. It
is an integral formulation. Hence, it relates to integral equations, which incorporate the differential
equation governing wave propagation with any and all necessary boundary and initial conditions.
In contrast to a differential equation, the integral formulation includes all specifics that prescribe
the actual particular physical experiment and realization.

Wavefields care about all the medium properties the wave has experienced. Linear superposition
and causality provide a solution in all space and time. Linear superposition and causality are
sufficient when all sources and medium properties are explicitly known, and included in their
formulation. If the objective is to reconstruct the wavefield in a restricted region of space and time,
Green’s theorem provides a solution that calls for explicit inclusion of medium’s properties and
source’s characteristics within that restricted portion of space and time, and an implicit but precise
inclusion of medium and source influences outside that space region and interval of time, through
boundary contributions in space and time.

Among the plethora of Green’s theorem contributions, we provide a short list from seismic appli-
cations: (1) It can separate wavefields due to sources on different sides of a boundary, i.e., the
extinction theorem. (2) It can predict wavefields explicitly from surface measurements; a basic
ingredient in wave theory migration and tomography. (3) It provides a fully quantitative and com-
plete description of Huygens principle, and predicts and includes the famous obliquity factor. (4)
It is a method for determining the source signature and radiation pattern. (5) It provides a way to
remove ghosts, and free-surface multiples.

Green’s theorem is an integral method. When discussing integral methods, it is useful to begin with
Isaac Newton’s fundamental theorem of the integral calculus, which relates something summed over
an interval to something else evaluated at the endpoints of the interval. The fundamental theorem
of integral calculus provides the foundation for solving a problem within a bounded region when the
boundary is known: if f ′(x) is continuous on the closed interval [a, b] and f(x) is the antiderivative

of f ′(x) (i.e., f ′(x) =
df(x)
dx

) on [a, b], then

∫ b

a
f ′(x)dx = f(x)|ba. (1)
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This important result connects the purely algebraic indefinite integral with the analytic (or geomet-
ric) definite integral; the area under the curve f ′(x) within a region [a, b] is analogous to evaluating
the function f(x) at the endpoints, f(x)|ba. The multidimensional extension of this theorem is found
in the divergence or Gauss’s theorem: Given a vector A, which is continuous at the surface S and
whose divergence is integrable, ∫

V
∇ ·A dx =

∮
S

A · n dS (2)

is obtained, where x is a three dimensional vector (x1, x2, x3) characterizing the volume V enclosed
by the surface S, and n is the unit vector normal to this surface. The integral of the divergence
of A over the whole volume contained by S is equivalent to the normal outflow integral of this
vector (Morse and Feshbach, 1953). Letting A = u∇ν − ν∇u, Green’s theorem or Green’s second
identity is obtained (Green, 1828),∫

V
[u∇2ν − ν∇2u]dx =

∮
S
[u∇ν − ν∇u] · nds. (3)

This result provides a mathematical tool to evaluate a volume integral of the the quantity [u∇2ν−
ν∇2u] using only boundary values at the surface of integration given by the normal component of
the vector [u∇ν − ν∇u]. This elegant mathematical identity is simple and powerful. It can be
used with any pair of scalar functions that have normal derivatives at the surface S and Laplacians
in V , hence, resulting in an unconstrained amount of possible combinations and applications.

Thus, it is possible to think of Green’s theorem as a generalization of Gauss’s theorem1, and
the latter as a generalization of the fundamental theorem of integral calculus, which provides a
foundation to solving problems within a limited region or interval. All of these theorems2 provide
a cumulative effect or sum of what is inside to something else summed on the boundary.

When Green’s theorem is applied to seismic waves, what happens is that two wavefields are consid-
ered at once, one being the actual wavefield of interest and the other chosen entirely for convenience,
called the auxiliary wavefield, and chosen entirely to achieve a specific purpose or objective. The
auxiliary wavefield is totally a mathematical entity, it may or may not have any relationship with
the physics of the actual problem. For example, if the conveniently chosen auxiliary wavefield has
a localized Dirac delta function as its source, then the interplay between the actual wavefield and
the auxiliary wavefield will sift the integral over the volume, and rather than producing a sum, it
will produce the value of the actual wavefield at a point within the volume (i.e., at the center of
the Dirac delta function). A different example is when the actual wavefield is the marine wavefield
and contains free-surface multiples and ghosts, and the auxiliary wave field is the wavefield without
free-surface associated events. Green’s theorem then provides an integral equation whose solution
represents free surface multiple removal; see for example, Fokkema and van den Berg (1993).

In the case of Green’s theorem applied to source signature estimation, one field is the actual entire
wavefield and the auxiliary is the causal Green’s function for a half space of water. In migration,

1However, it most be noted that George Green formulated and published his theorem more than ten years ahead
of Johann Carl Friedrich Gauss (Kline, 1974).

2Stoke’s theorem also obeys this explanation.
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one wavefield is the actual scattered wavefield (reflection data) and the auxiliary is the anticausal
Green’s function assumed to govern propagation in the region above the sought after reflector
target. These few examples are in fact a small sampling of choices of auxiliary wavefields for
different Green’s theorem applications.

Now we are in a position to introduce the specific forms of Green’s theorem that are relevant for
the objectives in this tutorial.

Using Green’s theorem in seismic exploration

The objective of this tutorial is to study and analyze some specific applications of Green’s theorem
to seismic exploration. For those different applications, there will be different choices of the volume
and functions u and ν introduced to satisfy equation 3. These different choices are the foundation
for applications dealing with

• data reconstruction (including regularization and redatuming),

• seismic interferometry and virtual source method,

• wavefield separation,

• wavelet estimation, and

• wavefield deconvolution.

(This list of applications is not intended to be complete.) These applications are connected by
the same framework and their differences rely on the specific functions and boundary conditions
imposed upon Green’s theorem as well as the approximations that some of these applications
make to avoid certain requirements of the theory. Throughout this tutorial, the first function in
equation 3, u, will be selected to be the pressure field P corresponding to recorded values of the
pressure field in a marine seismic experiment. The second function ν will be selected depending on
the application that will be derived.

In the section concerning seismic interferometry, a form of wavefield retrieval, an anticausal Green’s
function satisfying the same Helmholtz operator as the pressure field is selected as the second
function, ν, in equation 3 (see for example Weaver and Lobkis (2004); Wapenaar (2004); Korneev
and Bakulin (2006); Wapenaar and Fokkema (2006) and references within). In a marine experiment,
the pressure field satisfies the Helmholtz operator for a medium consisting of a half space of air,
the water column and the Earth’s subsurface. Two points have to be considered:
First, to provide an analytic form of this Green’s function, requires knowledge of the medium’s
properties (velocity, density, etc.) that produced the pressure field. In general, that medium is
unknown. It is then not possible to solve for this anticausal Green’s function, nevertheless it can
be approximated by the conjugate of a second pressure field produced by the same medium but by
a different source.
Second, this choice of functions in Green’s theorem requires dual measurements (pressure data and
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its normal derivative). Since the normal derivative of the pressure field is not always measured,
approximations have to be introduced to seismic interferometry. The consequence is that the
synthesized wavefield has errors, the so-called spurious events.

Next we consider another form of wavefield retrieval, using a reference Green’s function3 and Green’s
theorem to create a more effective seismic interferometry method (Ramı́rez et al., 2007). This is
found by selecting the function ν as a causal or anticausal reference Green’s function satisfying
the Helmholtz operator for two homogeneous half spaces separated by a zero pressure surface
(such as the air-water surface in a marine experiment)(Weglein and Secrest, 1990; Weglein and
Devaney, 1992; Ramı́rez and Weglein, 2007). Both choices will provide algorithms to retrieve the
wavefield within a specified volume, requiring measurements of the pressure field and its normal
derivative at the volume’s surface. We will show that a high frequency approximation of the pressure
field’s normal derivative is more forgiving when an anticausal reference Green’s function is used in
situations when two-way wavefield exist.

The choice of a causal reference Green’s function as the second function ν in equation 3, will
also provide an algorithm for wavelet estimation and for the scattered field that depends on dual
measurements (Weglein and Secrest, 1990; Weglein and Devaney, 1992). A different choice for
ν that removes the requirement of the wavefield’s normal derivative is a Green’s function that
vanishes at two surfaces, which is going to be referred to as Dirichlet Green’s function (Osen et al.,
1998; Tan, 1999). The two surfaces where the Dirichlet boundary conditions are imposed are the
air-water surface and the measurement surface in a marine experiment (see figure 1). This choice
of functions in Green’s theorem gives a formalism for wavelet estimation that does not require the
wavefield’s normal derivative. With this choice of functions, another form of wavefield retrieval is
derived. The latter requires only measured pressure data and it can be applied to marine surface
seismic acquisitions (Weglein et al., 2000; Ramı́rez et al., 2007).

The last application is wavefield deconvolution, a theory applied to the removal of overburden
effects (overburden refers to the medium above the receiver or measurement plane), e.g. removal of
free-surface multiples (events due to the existence of the air-water surface) and source effects (due to
a source exploding above the location of interest). For this purpose, the function ν is selected to be
a Green’s function produced by the same medium as the pressure field, but without the existence
of a zero-pressure boundary condition at the free surface (Amundsen, 1999, 2001; Holvik and
Amundsen, 2005). The algorithm derived with this choice will remove all the free-surface multiples
and the source wavelet from the pressure field, and it will retrieve the deconvolved wavefield at
the receiver location (coincident source and receiver), effectively creating a source at the receiver
location. An analogous method for wavefield deconvolution, which requires the source wavelet,
was derived by Ziolkowski et al. (1998) and Johnston and Ziolkowski (1999). We will show that
wavefield deconvolution is related to the virtual source method (which is an interferometry method
and an approximation to Green’s theorem).

3In marine applications, when a towed streamer or OBS acquisition is considered, the reference Green’s function
can be selected to satisfy a homogeneous medium with water velocity with or without a free surface. Therefore, in
these situations, the reference Green’s function is analogous to the source-wavelet deconvolved direct wave in the
experiment. The direct wave in a VSP acquisition is not equal to the reference Green’s function.
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We are going to start this analysis with a selection of a pressure field and a causal Green’s function
as u and ν in equation 3. First we chose a causal reference Green’s function to obtain the general
Weglein and Secrest (1990) result; this form of Green’s theorem is commonly referred to as the
Kirchhoff-Helmholtz integral representation (Weglein and Devaney, 1992; Osen et al., 1994). This
selection will also permit to obtain an equation to compute the scattered field within a volume with
dual measurements at the surface. The results will be analyzed and the next choice of functions
and applications will be introduced. Throughout this tutorial, the medium satisfied by the Green’s
function strictly inside the volume is going to be assumed to be equal to the medium satisfied by
the pressure field within that same volume; the boundary conditions are not always going to be
equal for both wavefields, the same flexibility will be considered for the medium outside the volume.

Figure 1: Volume bounded by the free-surface and the measurement surface.

Green’s Theorem

The power of Green’s theorem resides in the flexibility and arbitrariness and remaining valid inde-
pendent of the choice of volumes, and evaluation points, and the interplay of the actual and fit for
purpose chosen auxiliary function, and the auxiliary function boundary conditions.

In the following, Green’s theorem is used to derive an integral representation of the pressure field P ,
which satisfies the inhomogeneous Helmholtz equation for a velocity distribution c(x) and constant
density (

∇2 +
ω2

c2(x)

)
P (x|xa;ω) = s(x, ω), (4)
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Figure 2: 2D Model.

where s(x, ω) is the source function. For simplicity, the source s(x, ω) in equation 4 is selected to
be

s(x, ω) = A(ω)δ(x− xa), (5)

which represents an impulsive source at x = xa with signature A(ω), producing the pressure field
P (x|xa;ω). The source representation as a convolution of an impulsive source and a wavelet or
source signature is reasonable for seismic experiments, which are performed with localized and
controlled sources.

The Green’s function, or impulse response, for the Helmholtz operator satisfies(
∇2 +

ω2

c2(x)

)
G(x|xb;ω) = δ(x− xb), (6)

where the impulsive source is centered at a position x = xb and the velocity distribution is given
by c(x). The solutions for equations 4 and 6 can be causal or anticausal with outgoing or ingoing
boundary conditions, respectively. The causal and anticausal waves are denoted by a + and a −
superscript, respectively. The pressure field is assumed to correspond to the measured data, hence,
its physical or causal solution is the only one that will be considered. However, for the Green’s
function, different selections in terms of causality and boundary conditions will be made to derive
the different applications of Green’s theorem in seismic exploration presented in this tutorial.

Substituting the wavefield P (x|xa;ω) and the causal Green’s function G(x|xb;ω) into Green’s
theorem, equation 3, as u and ν, and using equations 6 and 4 in the volume integral, gives∫

V
(P (x|xa;ω)[− ω2

c(x)2
G(x|xb;ω) + δ(x− xb)]
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−G(x|xb;ω)[− ω2

c(x)2
P (x|xa;ω) +A(ω)δ(x− xa)])dx

=
∮
S
[P (x|xa;ω)∇G(x|xb;ω)−G(x|xb;ω)∇P (x|xa;ω)] · n ds, (7)

which simplifies to∫
V

(P (x|xa;ω)δ(x− xb)−G(x|xb;ω)A(ω)δ(x− xa)) dx

=
∮
S
[P (x|xa;ω)∇G(x|xb;ω)−G(x|xb;ω)∇P (x|xa;ω)] · n ds. (8)

This solution is the most general form of Green’s theorem that will be encountered in this tutorial.

Figure 3: Green’s function for an experiment with a free surface. On the left hand side, the method of
images is illustrated. The right hand side shows the actual reference Green’s function for a
source and receiver below the zero pressure surface.

Green’s Theorem with a causal Green’s function

In this section, two seismic applications using Green’s theorem will be derived: wavelet estimation,
and wavefield retrieval. Both methods are applied to a marine seismic experiment. An analysis
and discussion of the results will be performed at the end of the section. This analysis will serve
as motivation for the applications of Green’s theorem discussed and derived in section .

If the Green’s function, G, in equation 8 is selected to be a causal Green’s function, G+, we obtain∫
V

(
P (x|xa;ω)δ(x− xb)−G+(x|xb;ω)A(ω)δ(x− xa)

)
dx

=
∮
S
[P (x|xa;ω)∇G+(x|xb;ω)−G+(x|xb;ω)∇P (x|xa;ω)] · n ds, (9)

which corresponds to the Kirchhoff-Helmholtz integral representation (see, e.g., Morse and Feshbach
(1953); Weglein and Secrest (1990); Weglein and Devaney (1992)).
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Figure 4: The cylindrical volume shown is bounded by the free surface and the measurement surface. The
lateral surface of the cylinder is assumed to be at infinity.

1st Scenario: The medium parameters for both fields are equal everywhere

Probably the simplest case that can be considered is the one in which the Green’s function is the
impulse response for the same Helmholtz operator as the measured pressure field everywhere. If the
medium parameters, c(x), for the pressure field (satisfying equation 4) and the reference Green’s
function (satisfying equation 6) are identical not only throughout the volume enclosed by S, but
everywhere, then, the pressure field obeys the relation P = A(ω)G+. This relation helps analyzing
the output of Green’s theorem in equation 9 in the present scenario. The surface integral in Green’s
theorem requires the knowledge or measurement of the pressure field, the Green’s function and their
normal derivatives at the boundary.

The volume integral contains delta functions. Hence, the output of this integral depends on whether
the source position, xa, and the observation point (the position of the Green’s function’s source),
xb, are or not enclosed by the mathematical surface defined by S. Therefore, there exist three
possibilities for the evaluation of the volume integral.∫

V

(
P (x|xa;ω) δ(x− xb)−G+(x|xb;ω) A(ω) δ(x− xa)

)
dx
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=


P (xa|xb;ω)−A(ω)G+(xa|xb;ω) = 0 if both sources are strictly inside S
P (xa|xb;ω) if only the observation point xb lies within V
−A(ω)G+(xa|xb;ω) = −P (xa|xb;ω) if only the source xa lies within V ,

(10)
where the principle of source-receiver reciprocity has been used, and∫

V

(
P (x|xa;ω)δ(x− xb)−G+(x|xb;ω)A(ω)δ(x− xa)

)
dx

=
∮
S
[P (x|xa;ω)∇G+(x|xb;ω)−G+(x|xb;ω)∇P (x|xa;ω)] · n ds. (11)

When both sources lie within V (first case in equation 10) a functional relationship between P and
its normal gradient on S is found,

0 =
∮
S
[P (x|xa;ω)∇G+(x|xb;ω)−G+(x|xb;ω)∇P (x|xa;ω)] · n ds, (12)

meaning that the pressure field and its normal derivative cannot be prescribed independently (Amund-
sen, 1994; Visser et al., 1998). This functional relationship was used by Amundsen (1994) to develop
an inverse wavefield extrapolation method that allows reconstruction of the wavefield within the
subsurface to create a structural image by extrapolating the field from the measurement surface
through each one of the different Earth layers and applying boundary conditions at each inter-
face before continuing extrapolation through the next layer. The medium between the different
interfaces must be known (a smoothly varying approximation of the medium can be used) and dual
measurements of the pressure field are necessary. In general, imaging with Green’s theorem requires
knowledge of the medium. Therefore, its effectiveness depends on the accuracy of the Earth model
used (in particular, is highly dependent on the quality of the velocity model). Another important
example of inverse wavefield extrapolation (migration) using the framework of Green’s theorem is
given by the work of Schneider (1978), in which data containing primaries only and an anticausal
Green’s function are used.

Due to the fact that P = A(ω)G+, the output of Green’s theorem when only one of the points
xa or xb lie strictly within S, is roughly equivalent for either experiment. The results in the
second and third case in equation 10 are equivalent within a (−1) factor indicating whether the
observation point is inside or outside the volume. Both produce the physical pressure field for a
medium with velocity c(x) and constant density between two points, xa and xb; one point being
located anywhere inside the mathematical volume V and the other one outside. In these two cases,
boundary conditions (i.e. measurements of the wavefields and their normal derivative at the closed
surface S) produce the total wavefield for a source inside the volume enclosed by S and a receiver
outside, as well as the reciprocal experiment.

Green’s theorem for two functions, P and G+, satisfying the same medium parameters everywhere
results in a formalism for inverse wavefield extrapolation, or migration, which depends on the
knowledge or ability to accurately estimate the subsurface properties. This form of the theorem also
provides two reciprocal and analogous formulations to predict the wavefield produced by a source
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lying within a closed surface, where dual measurements are available, and a receiver outside that
volume. The Green’s function required for this configuration is, in realistic situations, not available
since the medium parameters (in this case c(x)) that created it are unknown. Furthermore, if
regularizing data to a grid with coincident sources and receivers is the purpose of doing wavefield
extrapolation, then, the results in this section can not be the method of choice. To create coincident
sources and receivers, it is necessary to have both the source and observation point surrounded by
the closed surface. The output of the surface integral in this scenario is zero (see first case). To
overcome this situation, a possibility would be to select a Green’s function that only satisfies the
same medium as the pressure field within the volume and a different medium outside it.

2nd Scenario: The medium parameters for both fields are only equal at the
boundary S and within the volume V

When the medium parameters for the pressure field and the Green’s function are equal only through-
out V , the volume integral or left hand side of Green’s theorem, with a causal Green’s function for
the medium within V , becomes

l.h.s. =


P (xb|xa;ω)−A(ω)G+(xa|xb;ω) if both sources are strictly inside S
P (xb|xa;ω) if only the observation point xb lies within V
−A(ω)G+(xa|xb;ω) if only the source xa lies within V ,

(13)

depending on the position of the source and observation point, and

l.h.s. =
∮
S
[P (x|xa;ω)∇G+(x|xb;ω)−G+(x|xb;ω)∇P (x|xa;ω)] · n ds. (14)

The medium parameters for the Green’s function and the pressure field are not equal everywhere,
so P 6= A(ω)G+.

For a volume in which P and G+ satisfy the same Helmholtz operator, the source for the pressure
field lies outside the volume and the observation point lies inside (third case in equation 13), Green’s
theorem gives

−A(ω)G+(xa|xb;ω) =
∮
S
[P (x|xa;ω)∇G+(x|xb;ω)−G+(x|xb;ω)∇P (x|xa;ω)] · n ds. (15)

The left hand side is the wavefield produced by all the sources inside V . The surface integral acts
as a filter for the effects of the sources lying outside the volume. The wavefield A(ω)G+(xa|xb;ω)
is the reference wavefield, produced by all sources enclosed by S and propagating in a wholespace
satisfying the medium parameters in V . Equation 15 can be used to estimate the source wavelet
in a marine seismic experiment; it was first proposed and derived by Weglein and Secrest (1990)
and Weglein and Devaney (1992).

For a marine application, a convenient volume within the water column bounded by the measure-
ment surface and the air-water interface, or free surface, is considered (see figure 4). The medium
parameter c(x) in V is the constant water velocity c0, or reference velocity. The pressure field and
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the Green’s function satisfy the Helmholtz equation for a medium with constant velocity, c0, within
the volume V , and share the same boundary condition at the free surface.

The Green’s function is chosen to propagate in a homogeneous half space bounded by a free-surface
S0 at depth z = 0. In order to impose the Dirichlet boundary condition at z = 0, required by the
free-surface, the Helmholtz equation is expressed using a real source at xb = (x1b, x2b, x3b) and an
image source with negative amplitude at −χb = (x1b, x2b,−x3b) (see figure 3 ), where x3 is the
vertical direction and it is zero at the free surface. Thus,(

∇2 +
ω2

c20

)
G+

0 (x|xb;ω) = δ(x− xb)− δ(x + χb) (16)

is the Helmholtz equation.

The causal reference Green’s function G+
0 includes the wave that propagates directly from the source

at xb to the receiver, Gd+0 , and the wave that propagates directly from the image source at −χb to
the receiver, Gd′+0 ,

G+
0 (x|xb;ω) = Gd+0 (x|xb;ω)− Gd′+0 (x|−χb;ω). (17)

In this experiment, both P and G+
0 vanish at the free-surface. Therefore, the upper boundary of

V gives zero contribution to the integral. If the measurement surface extend towards infinity, only
the measurement surface (Sm in figure 4) contributes to the surface integral, the lateral surface
contribution, Sl, will vanish according to the Sommerfeld radiation condition (Sommerfeld, 1954).
Selecting the actual source for the pressure field to be inside V , and the observation point, xb,
outside the medium, below the measurement surface, equation 15 becomes

−A(ω)G+
0 (xa|xb;ω) =

∫
Sm

[P (x|xa;ω)∇G+
0 (x|xb;ω)− G+

0 (x|xb;ω)∇P (x|xa;ω)] · n ds. (18)

This equation reproduces the result first obtained by Weglein and Secrest (1990). Equation 18
is used to estimate the source wavelet in a marine experiment (the method has been extended to
include a source array and to accommodate an experiment produced by an elastic Earth (Weglein
and Secrest, 1990; Weglein and Devaney, 1992)). The surface integral effectively filters the scattered
wavefield and produces the reference Green’s function multiplied by the source wavelet, which, in
this example, corresponds to the direct wave. This technique relies on dual measurements (pressure
field and its normal derivative). Traditionally, the gradient of the pressure field has not always been
available, representing a challenge and an impediment to take full advantage of this theory. In recent
years, new acquisitions techniques with dual measurements have surfaced and the promise of this
theory can be tested and used in practice.

Using the reference Green’s function in equation 16 and allowing the observation point and the
actual source to be inside the medium, a formalism for the prediction or reconstruction of the
scattered field is obtained. It is given by the first case in the present section (equation 13),

P (xb|xa;ω)−A(ω)G+
0 (xa|xb;ω) =

∫
Sm

[P (x|xa;ω)∇G+
0 (x|xb;ω)− G+

0 (x|xb;ω)∇P (x|xa;ω)] · n ds.

(19)
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Using the principle of source-receiver reciprocity and the fact that the scattered field is the difference
between the total pressure field and the direct wave or reference field, Ps(xa|xb;ω) = P (xa|xb;ω)−
A(ω)G+

0 (xa|xb;ω), results in

Ps(xa|xb;ω) =
∫
Sm

[P (x|xa;ω)∇G+
0 (x|xb;ω)− G+

0 (x|xb;ω)∇P (x|xa;ω)], ·n ds. (20)

This is an output with important practical implications for seismic exploration. It retrieves the
total wavefield in new locations and removes the direct wave A(ω)G+

0 (xa|xb;ω). The output is the
scattered field.

With both sources inside the volume, the surface integral effectively filters the reference field and
retrieves the scattered field between the sources (as if one source was a receiver: virtual receiver).
The retrieved scattered field is the total wavefield due to all sources being outside the volume.
This method was tested with 2D finite difference data modeled at Statoil Research Center. using
the model shown in figure 2. The data was modeled for five receiver lines at increasing depths,
starting at 11.5m with an increment of 6.5m, the sources were located at 6m depth, the maximum
frequency in the data is 70hz and the time interval between measurements is 0.004s. The input data
corresponds to receivers from the four deeper surfaces (yellow line in figure 2), an example of the
input data is displayed in figure 5. The calculations were done with an analytic Green’s function
G+

0 computed for a source at 11.5m and the same receivers used in the input data. Hence, the
reconstructed scattered field corresponds to a source at 6m and receivers at 11.5m. An example
of the reconstructed scattered field (near offsets in this example) is displayed in figure 6. Note
that the reconstructed scattered field contains a small direct wave residual. According to the
theory, the algorithm given by equation 20 must retrieve the scattered field and filter the direct
wave. However, this theory assumes infinite aperture in space and time. When applied to data
with limited aperture, the method effectively retrieves the scattered field, but the direct wave is
not completely filtered. If the near offsets are provided, the screening of the direct wave can be
improved.

The second case in equation 13, places the actual source outside and the observation point inside
V . The result is the total wavefield between the source outside and the observation point inside
V . Since there is no physical source within the volume, only the observation point, then the
extrapolated wavefield is the total wavefield,

P (xb|xa;ω) =
∫
Sm

[P (x|xa;ω)∇G+
0 (x|xb;ω)− G+

0 (x|xb;ω)∇P (x|xa;ω)] · n ds. (21)

Green’s theorem retrieves the total wavefield due to all sources outside the volume. The first and
second case are both good relations to retrieve the wavefield between two sources, where one source
acts as a virtual receiver.

The filtering effect provided by the surface integral in this application of Green’s theorem, is also
known as extinction theorem. The application of the extinction theorem, will screen the scattered
field if the observation point is outside V and the source inside (third case); it will screen the
reference field for all actual sources inside the volume if the observation point lies inside V (second
and third case).
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Figure 5: Input data: pressure field (right) and its normal derivative (left). Near offsets from 0−150m are
assumed not to be recorded.

Figure 6: Reconstructed scattered field compared with modeled data.

Analysis

Using causal Green’s functions, Green’s theorem provides formalisms for wavelet estimation, seismic
interferometry and inverse wavefield extrapolation. All of these applications require the availability
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of the pressure field and its normal derivative. Within specific choices of Green’s functions, the
actual medium properties were also required.

In seismic exploration, probably the most desired method for seismic interferometry, or wavefield
retrieval, is the one that considers both sources within the medium and that would allow for
extrapolation to coincident source and receiver positions (in a regular grid). Therefore, Green’s
theorem, with a causal reference impulse response, as described by equation 20, seems to be the
more convenient result. It can be readily applied to applications such as wavefield extrapolation,
interpolation, and regularization in a surface seismic experiment. Green’s theorem with a causal
reference field provides a method to extrapolate data into a regular grid of coincident sources
and receivers in a 3D experiment. The latter is performed by using an analytic Green’s function
G+

0 (x|xb;ω) calculated for the actual receiver positions x and placing the observation point at the
desired output locations within the volume enclosed by the receivers. With this choice of source
and virtual receiver positions, the algorithm performs wavefield separation and outputs only the
scattered part of the field (it outputs the unperturbed field when the observation point is outside
V ). It is an exact method. Accordingly, it requires measurements of the pressure field and its
normal derivative at the surface.

For situations when the normal derivative is not measured and an estimate is not always available,
approximations are often used. In the seismic interferometry derivation, Wapenaar (2004) proposed
to use an asymptotic approximation to the pressure field’s normal derivative,

∇P (x|xa;ω)] · n ≈ ikP (x|xa;ω), (22)

where k = ω
c0

. This is a very poor approximation for scenarios in which two-way wavefield exist, such
as a marine experiment (the free-surface reflects all the upgoing wavefield). It is a high frequency
and one-way wave approximation taken at a location where two-way waves exist. Asymptotic
approximations, although often useful, are never equivalent to the original form. In appendix , we
show that the approximation in equation 22, changes completely the output of the surface integral
in the form of Green’s theorem studied in this section. The output of the surface integral, with
this approximation, becomes zero independent of the source and virtual receiver location relative
to the surface of integration.

There are different ways of addressing this situation. The first, and more reliable one, is to provide
all the ingredients required by Green’s theorem by measuring the wavefield’s normal derivative,
or by measuring the pressure field at a second surface parallel to the measurement surface and
calculating the gradient between the fields. The second solution is to find a better approximation
for the normal component of the particle velocity, we refer the interested reader to Amundsen et al.
(1995), Guo et al. (2005) and references within. A third solution is to use an anticausal Green’s
function in the calculations (Weaver and Lobkis, 2004; Wapenaar, 2004; Korneev and Bakulin, 2006;
Draganov et al., 2006; Ramı́rez et al., 2007) and use approximations, as explained and discussed
in the next section. Last, but not least, it is possible to use a different Green’s function that
annihilates the requirement of the wavefield’s normal derivative, i.e. using a Green’s function with
Dirichlet boundary conditions at the free surface and at the measurement surface (Osen et al., 1998;
Tan, 1999; Weglein et al., 2000; Zhang and Weglein, 2006; Ramı́rez et al., 2007). This is explained
in section .
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Green’s theorem with an anticausal Green’s function

In this section, anticausal solutions for the Helmholtz operator will be used to derive standard
seismic interferometry and direct wave interferometry with crosscorrelations. An analysis and
discussion of these applications will be provided at the end of the section. The limitations and
errors of these forms of Green’s theorem and interferometry applications, due to assumptions that
will be explained, will serve as motivation for section .

The Helmholtz equation can have a causal solution or an anticausal solution. The anticausal Green’s
function, G−(x|xb;ω), is the complex conjugate of the causal one, G+(x|xb;ω), and P−(x|xb;ω)
is the complex conjugate of P+(x|xb;ω). An anticausal pressure field is a non physical solution.

The anticausal Green’s function is defined by

G−(x|xb;ω) =
∫ ∞

−∞
e−iωtG+(x|xb;−t)dt. (23)

Green’s theorem applied to the pressure field and an anticausal Green’s function, when both wave-
fields satisfy the same medium parameters within the mathematical volume, V , enclosed by the
surface S, becomes∫

V

(
P (x|xa;ω)δ(x− xb)−G−(x|xb;ω)A(ω)δ(x− xa)

)
dx

=
∮
S
[P (x|xa;ω)∇G−(x|xb;ω)−G−(x|xb;ω)∇P (x|xa;ω)] · n ds. (24)

In the next sections, we analyze the inner workings of this equation with different choices of Green’s
functions.

1st Scenario: The medium parameters for both fields are equal everywhere

The medium parameters for the pressure field and the anticausal Green’s function are chosen to
be identical everywhere. Using the principle of source-receiver reciprocity, the pressure field, P ,
and the anticausal Green’s function, G−, in Green’s theorem, the volume integral (left hand side
of equation 24) becomes

l.h.s. =


2i=[P (xa|xb;ω)] if both sources are strictly inside S
P (xb|xa;ω) if only observation point xb lies within V
−P−(xa|xb;ω) = −A(ω)G−(xa|xb;ω) if only the source at xa lies within V ,

(25)

where =[P ] refers to the imaginary part of the pressure field, and

l.h.s. =
∮
S
[P (x|xa;ω)∇G−(x|xb;ω)−G−(x|xb;ω)∇P (x|xa;ω)] · n ds. (26)
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For application on marine data, a volume bounded by the free-surface and the measurement surface
is selected. Since the medium for G− is the same as the one that P satisfies everywhere, the
measurement surface is not restricted to the water column.

The configuration leading to the result for the first case in 25 can be used to derive the traditional
seismic interferometry equation. This configuration assumes that the physical source and the
observation point lie within V . This equation,

2i=P (xa|xb;ω) =
∮
S
[P (x|xa;ω)∇G−(x|xb;ω)−G−(x|xb;ω)∇P (x|xa;ω)] · n ds, (27)

is used as the starting point for common approaches to seismic interferometry. In these approaches,
the normal derivatives are approximated with a far-field and one-way wave approximation shown
in equation 22. After applying the one-way wave and high frequency approximation in equation 22
and simple mathematical manipulation, an equation for wavefield retrieval or seismic interferome-
try (Wapenaar, 2004; Wapenaar and Fokkema, 2006) is obtained (see appendix ),

2i= [P (xb|xa;ω)] ≈
∫
Sm

−2ik P (x|xa;ω)G−(x|xb;ω) dx. (28)

This equation requires the knowledge of the medium everywhere. The Green’s function G− satisfies
the same medium properties as the pressure field.

In general, the actual medium is unknown. Hence, G− is substituted by the complex conjugate of
a second pressure field P , defining P− = P

∗. Complex conjugation is indicated by a ∗ superscript.
The pressure field P is assumed to satisfy the same wave equation as P (equation 4); it is also
assumed to be measured at the same receiver positions as P , but generated by a different source
location, xb, within the volume. The source producing the anticausal Green’s function is assumed
to be s(x, ω) = B(ω)δ(x−xb), where B(ω) is the source signature for P−. Using these two pressure
fields in Green’s theorem, multiplies the output by an extra source wavelet,∫

V

(
P (x|xa;ω)B(ω)δ(x− xb)− P−(x|xb;ω)A(ω)δ(x− xa)

)
dx

=
∮
S
[P (x|xa;ω)∇P−(x|xb;ω)− P−(x|xb;ω)∇P (x|xa;ω)] · n ds. (29)

For simplicity we can assume that A(ω) = B(ω). Considering the first case in equation 25, Green’s
theorem simplifies to

2iB(ω)= [P (xb|xa;ω)] ≈
∫
Sm

−2ik P (x|xa; t)P−(x|xb;ω) dx, (30)

after solving the volume integrals and approximating the normal derivatives. In the frequency
domain the real and imaginary parts of the Fourier transform of a causal function are said to be
Hilbert transforms of each other. In other words, the Fourier transform of the odd and even parts
of a causal function constitute a Hilbert transform pair (Costain and Coruh, 2004). Since only the
imaginary part of the field is reconstructed, a Hilbert transform is used to calculate the real part
of the field (Robinson and Treitel, 1980).
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Using two measured wavefields to construct new data instead of a measured wavefield and a Green’s
function, introduces an extra factor of the source wavelet multiplying the reconstructed data. The
fact that the Green’s function G− is not calculated analytically and is replaced by a second mea-
sured pressure field P−, constrains the reconstructed wavefield to locations where actual sources
or receivers exist. If the anticausal Green’s function, satisfying the same medium properties as the
actual pressure field, is calculated, the extra source signature does not appear in the output (Wape-
naar, 2004). This particular Green’s function could be calculated by deconvolving the wavelet of
the pressure field in a preprocessing step, or as an extra step during the computation of seismic
interferometry as proposed by Vasconcelos and Snieder (2006). Wavelet deconvolution is a very
sensitive step and often introduces more errors and artifacts.

Figure 7: Reconstructed data with current seismic interferometry compared with modeled data.

Traditional seismic interferometry requires two approximations to the exact theory (one for each
normal derivative in equation 29). Seismic interferometry (equations 28 and 30) is a compromised
form of Green’s theorem and, hence, gives rise to spurious events. The normal derivative information
required by Green’s theorem, avoided by using far field approximations, would have combined
nonlinearly to cancel the so-called spurious multiples by using differences in sign that identify
opposite directions of the wavefield. Directivity is a part of the wavefield’s normal derivative.
The fact that equation 30 is compromising the theory was also discussed by Korneev and Bakulin
(2006) in their derivation of the virtual source method. To test traditional seismic interferometry,
the 2D finite difference pressure data for the model in figure 2 was used. The normal derivative was
approximated with the high frequency and one-way wave approximation used to derive equation 30.
In the test, the data used were modeled with finite differences for a receiver line with 200 receivers
separated 12.5m from each other and 16 sources with a 25m separation. The 16 source gathers were
used to calculate P and P− and introduced into the algorithm described by equation 30. Hence, the
output traces correspond to 16 sources separated 25m from each other and 16 receivers separated
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Figure 8: The spurious multiples produced by current seismic interferometry are highlighted.

25m from each other. The reconstructed data is shown on the left of figure 7. The modeled data
is shown on the right hand side for comparison. In figure 8, the spurious multiples are highlighted.

2nd Scenario: The medium parameters for both fields are equal inside the volume
V and different outside

In this section, we chose an anticausal Green’s function and a causal pressure field, both corre-
sponding to the same medium properties only at the surface, S, and throughout the volume, V .
Again, the output of the volume integral in Green’s theorem (equation 24) will depend on the
location of the physical source and the observation point.

The evaluation of volume integral, or the left hand side, in Green’s theorem gives

l.h.s. =


P (xb|xa;ω)−A(ω)G−(xa|xb;ω) if both sources are strictly inside S
P (xb|xa;ω) if only the observation point xb lies within V
−A(ω)G−(xa|xb;ω) if only the source at xa lies within V ,

(31)

and

l.h.s. =
∮
S
[P (x|xa;ω)∇G−(x|xb;ω)−G−(x|xb;ω)∇P (x|xa;ω)] · n ds. (32)

For a marine application (towed streamer and OBC acquisitions), a volume within the water column,
bounded by the free-surface and the measurement surface is selected. When the volume is bounded
by the free-surface and the measurement surface, the surface integral in Green’s theorem has no
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contribution from the upper boundary of V . Letting the measurement surface extend towards
infinity, and using causal wavefields, the contribution from the lateral surface Sl vanishes according
to the Sommerfeld radiation condition (Sommerfeld, 1954). The anticausal waves, on the other
hand, have a contribution at infinity, so there will have a small error due to lack of measurements
at the cylinder’s wall Sl. The measurement surface (Sm in figure 4) will be the only contribution
considered in the surface integral.

For a medium with a free surface, the anticausal version (or the complex conjugate) of the causal
reference Green’s function, G+

0 , in equation 16 will be considered. Introducing the anticausal
reference Green’s function into the first case in equation 31, we find an equation for wavefield
retrieval that assumes a source within the volume and predicts the wavefield anywhere inside that
volume,

P (xa|xb;ω)−A(ω)G−0 (xa|xb;ω) =∫
Sm

[P (x|xa;ω)∇G−0 (x|xb;ω)− G−0 (x|xb;ω)∇P (x|xa;ω)] · n ds, (33)

in agreement with the result derived by Ramı́rez et al. (2007). Introduce P (xa|xb;ω) = P 0(xa|xb;ω)+
P s(xa|xb;ω) into equation 33, where P 0 = A(ω)G+

0 (xa|xb;ω) is the reference field and P s is the
scattered field. The left hand side becomes

P s(xa|xb;ω) +A(ω)
[
G+

0 (xa|xb;ω)− G−0 (xa|xb;ω)
]

= P s(xa|xb;ω) + 2i A(ω) =
[
G+

0 (xa|xb;ω)
]
.

(34)

Thus, in equation 33, the total scattered field plus the imaginary part of the direct wave between a
source at xa and an observation point at xb is reconstructed. This result is less desirable than the
one obtained with a causal Green’s function, where the surface integral effectively screened all the
contribution of the direct or reference wavefield. Using an anticausal Green’s function the direct
wave is not screened by the surface integral; only the real part of the direct wave is filtered. If a
measurement or good estimate of the pressure field’s normal derivative is available, then, a causal
reference Green’s function is the best choice.

If the normal derivative can not be obtained, and a high frequency approximation is used, then,
choosing an anticausal reference impulse response (rather than a causal one) is a better solution.
The reason is that when the normal particle velocity of a two-way wavefield is approximated by a
factor of ik times the original wavefield, and used in Green’s theorem, the output of the surface
integral with a causal reference Green’s function vanishes (see appendix ). As it is explained in the
following lines, and demonstrated by numerical examples, this does not happen with the anticausal
Green’s function.

Ramı́rez et al. (2007) assumed that the normal derivative of the pressure field is not measured and
selected a high frequency approximation to satisfy, with a single compromise, Green’s theorem. In
other words, the approximation described by equation 22 was used in equation 34, to obtain direct
wave seismic interferometry

P (xa|xb;ω) ≈
∮
S
[P (x|xa;ω)∇G−0 (x|xb;ω)
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Figure 9: Comparison between direct wave interferometry (Green’s theorem + a single approximation),
current seismic interferometry and modeled data.

− ikP (x|xa;ω)G−0 (x|xb;ω)] · n ds, (35)

or

P s(xa|xb;ω) + 2i A(ω) =
[
G+

0 (xa|xb;ω)
]
≈
∮
S
[P (x|xa;ω)∇G−0 (x|xb;ω)

− ikP (x|xa;ω)G−0 (x|xb;ω)] · n ds. (36)

The output is approximately equal to the scattered field and the imaginary part of the direct wave.
This result is very accurate compared to other seismic interferometry methods, when applied to the
surface seismic experiment. The improvement is illustrated with the 2 numerical example shown in
figure 9, where the input data corresponds to the pressure field modeled and used in the previous
sections of this tutorial.

Direct wave seismic interferometry, equation 36, was also tested using elastic finite difference 3D
surface seismic marine data(Ramı́rez et al., 2007). The Earth model consists of 3 layers, a free
surface, and a set of random point diffractors. The data was modeled by Ketil Hokstad and Roger
Sollie at Statoil Research Center. The modeled data consist of 10 source lines with 12 shots per
line. The source and receiver spacing in the numerical modeling was 25m in both (inline and
crossline) directions. The configuration is shown in figure 10. Direct wave seismic interferometry
was applied to 20 receiver lines with 121 receivers per line, 25m inline separation and 100m crossline
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Figure 10: Configuration for zero-crossline offset data reconstruction.

Figure 11: Reconstructed data (direct wave seismic interferometry) and modeled data.

separation. A simulated source line (12 sources) with 25m source interval overlay each receiver line,
as illustrated in figure 10 (sources are marked by red stars and receivers by green triangles). The
minimum distance to the receivers in both inline and crossline direction is 50 m in the selected shot
gathers. This data subset was put into equation 36 with an analytic anticausal reference Green’s
function. This Green’s function was calculated for 12 sources in a line with 25m source interval
and located at 0m crossline offset from the source line in the input data. In other words, the 12
sources for the anticausal reference Green’s function shared the same position as the sources for the
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input pressure field. The numerical test was repeated calculating the anticausal reference Green’s
function for 12 sources located at 100m crossline offset away from the source line in the input data.
The configuration for the second test is shown in figure 12. The goal is to reconstruct coincident
sources and receivers at the source line location, for the first experiment and to reconstruct the
receiver line at 100 meter away from the source line in the crossline direction (marked by the dashed
line in figure 12) for the second experiment. The retrieved Green’s function corresponds to:
Experiment 1.- A line with coincident sources and receivers (source line in figure 10) displayed in
figure 11. The reconstructed data is shown on the right and modeled data is shown on the left for
comparison.
Experiment 2.- A line consisting of 12 sources at zero crossline offset, sources from the input data,
and 12 receivers in a line at 100 m crossline offset (dashed line in figure 12). Figure 13 shows
the extrapolated data using direct wave seismic interferometry on the right. The modeled data is
shown on the left hand side of figure 13 for comparison.

Thee output of direct wave seismic interferometry has all the events correctly predicted and there
are no spurious multiples in the predicted data. The difference between the modeled data and
the direct wave seismic interferometry result is due to the high frequency approximation and a
bandlimited reference Green’s function used in the calculations. Also remember that this algorithm
has an effect on the output of the direct wave, as discussed in this section.

Analysis

Using the anticausal Green’s function, it is possible to find a formalism that permits an approxi-
mate retrieval of the pressure field between two sources (or receivers, using reciprocity principles)
as if one of them was a receiver. Two methods were explained and both of them have compro-
mises to the exact theory. The first one, standard seismic interferometry (Schuster, 2001; Derode
et al., 2003; Roux and Fink, 2003; Wapenaar et al., 2002) uses the measured wavefield and its com-
plex conjugate, making two approximations. These two approximations introduces the spurious
events and squares the output source signature. In most surface seismic situations, the spurious
multiple can damage the retrieved data significantly since their amplitudes are comparable to the
ones of the reconstructed primaries. The second one, direct wave interferometry using Green’s
theorem (Ramı́rez et al., 2007), uses an analytic anticausal Green’s function and only makes one
approximation. The output of this method is a close approximation to the total scattered field plus
the imaginary part of the direct wave.

The result provided by traditional seismic interferometry (equation 30) is often used as the start-
ing point for further analysis and applications. Some applications even assume that the normal
derivative of P+ and P− is P and −P , respectively. A considerable part of seismic interferometry
analysis and related publications, aims to address the issues created by the compromises made to
the exact theory and framework. This theory aims to fix the weaknesses of interferometry, such
as the extra power of the source wavelet and the spurious multiples. For example, Snieder et al.
(2006) studied the appearance of spurious multiples and proposed types of sources and acquisition
geometries that would help diminish it. Snieder et al. (2006) introduced the term spurious mul-
tiples to refer to artifacts created by interferometry. In particular, their analysis was performed
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Figure 12: Configuration for zero-crossline offset data reconstruction.

on data containing only singly reflected events. They showed, through analytic examples, how
the kinematics of singly reflected waves propagating between two receivers can be reproduced by
correlating the primaries produced by all sources and recorded by these two receivers. They also
showed that the correlation of primaries generated at different reflectors produce artifacts, which
they call spurious multiples. These artifacts are not true multiples. The reason to use the word
multiples was that these artifacts are the product of two amplitudes (reflection coefficients) due to
two different recorded primaries. In seismic interferometry any two events contained in the total
wavefields of two receiver or shot gathers will have a nonzero contribution. This contribution will
be the product of the two amplitudes corresponding to the pair of events being correlated and the
subtraction of their corresponding times, regardless of the amount of reflections the event had ex-
perienced. Hence, all events (primaries, direct wave, multiples, ghosts) are synthesized analogously
and they all have the opportunity to produce artifacts when being correlated with each other. In an
attempt to understand the nature of these artifacts, Snieder et al. (2006) give a heuristic argument
that interpret spurious multiples as the effect of aperture limitations and correlated sources; they
propose the idea that uncorrelated sources will eliminate these errors. This idea was later used and
extended by Wapenaar (2006).

Spurious multiples are the direct effect of theoretical approximations. Furthermore, spurious multi-
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Figure 13: Reconstructed data (direct wave seismic interferometry) and modeled data.

ples are not a direct consequence of aperture limitations and/or interactions between specific events
such as primaries in the data, but the outcome of the far-field approximations compromising the
effectiveness of Greens theorem Ramı́rez Pérez (2007); Ramı́rez and Weglein (2008). The analysis
and new theory launched from seismic interferometry often ignored the fact that approximations
were made. It is necessary to understand that asymptotic analysis has, in fact, two steps: (1)
an asymptotic approximation (e.g., a high frequency and one-way wave approximation) and (2)
an analysis, and a set of conclusions reached from the result of the first step. The very reason
for performing asymptotic approximation is to alter algorithms and their underlying assumptions,
properties, and requirements. An approximation is never equivalent to the original form.

We are not claiming that analyzing and using the result in standard seismic interferometry to
develop new theory, understanding or applications is a bad path to follow, but there exists a danger
of forgetting the assumptions and requirements of the original theory. In many situations, the new
tools are effective and on target. For example, Otnes et al. (2006) derived a data-driven free surface
demultiple algorithm for WVSP data. The method was derived by using seismic interferometry
and applied to a real WVSP experiment to effectively construct surface seismic data, which was
convolved with the WVSP data to achieve its goal of removing the free-surface multiples without
any subsurface information.

Another strategy is to understand that the errors in the synthesized wavefield are an effect of the as-
sumptions applied to satisfy Green’s theorem, as well as the functions used in its derivation (Ramı́rez
et al., 2007). Hence, direct wave interferometry appears to be a better approximation for surface
seismic experiments where an analytic Green’s function is available and fewer assumptions pro-
vide more accuracy and effectiveness. Furthermore, using an analytic reference Green’s function,
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data can be extrapolated to positions where no receivers or sources were located. The synthesized
data would have a single source signature and almost no artifacts are created. Thus, direct wave
interferometry provides an improvement over traditional approaches.

Anticipating the consequences due to the compromises made, allows us to look at the original
framework and attempt to find better ways to meet its requirements. If the vertical component of
the pressure field is the weakness, then we can find ways to avoid that requirement. An example
of this approach is accomplished by introducing another form of Green’s theorem in which a two-
surface Dirichlet boundary condition to the reference Green’s function is imposed. This method
does not require the normal component of the particle velocity. It is explained in the next part of
this tutorial.

Green’s theorem with different boundary conditions imposed

In this section we introduce different boundary conditions imposed to the functions u and ν used in
Green’s theorem (equation 3). It will be shown that, for the applications discussed in the previous
sections, an improvement can be found in the framework given by Green’s theorem.

Dirichlet boundary conditions: The medium parameters for both fields are equal
inside the volume V and different at and below the measurement surface

A Green’s function that vanishes on both the free and measurement surfaces, eliminates the data
requirement of the normal derivative in Green’s theorem (Weglein and Devaney, 1992; Tan, 1992;
Osen et al., 1998). This boundary condition can be fulfilled by the method of images or by adding
a particular solution that contains the desired boundary conditions to the homogeneous solution
for the Helmholtz equation (Morse and Feshbach, 1953).

The double-surface Dirichlet Green’s function cannot be measured in a seismic experiment, since
the actual medium only has one zero pressure surface. This Green’s function does not represent a
physical wavefield; it is a convenient mathematical construction. It needs to be calculated analyti-
cally. We consider a homogeneous medium within the volume and the source point for the Green’s
function located inside V .

Use the configuration shown in figure 4, where the selected volume lies entirely in a homogeneous
medium and is bounded by the air-water surface and the measurement surface. These two surfaces
are the ones on which the Dirichlet boundary conditions will be imposed for the Green’s function
calculation.

If we describe the two-surface Dirichlet Green’s function GD0 by the method of images (see figure 14),
it will include the wave that propagates directly from the real source to the receiver and the wave
that propagates directly from each image source to the receiver. Introducing P and GD0 (x|xb;ω)
into equation 3 as u and ν, and assuming the medium parameters for both fields are equal within
the volume V (where V is the volume in figure 4), we obtain∫

V

(
P (x|xa;ω)δ(x− xb)− GD0 (x|xb;ω)A(ω)δ(x− xa)

)
dx
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Figure 14: The method of images is used to mathematically describe the two-surface Dirichlet Green’s func-
tion.

=
∫
Sm

P (x|xa;ω)∇GD0 (x|xb;ω) · nds, (37)

where we have taken into account the boundary conditions. The left hand side gives

l.h.s. =

{
P (xb|xa;ω)−A(ω)GD0 (xa|xb;ω) if both sources are strictly inside S
P (xb|xa;ω) if only the observation point xb lies within V .

(38)

The source for the Dirichlet Green’s function must be inside the volume to satisfy the boundary
conditions.

The first case in equation 38,

P (xa|xb;ω)−A(ω)GD0 (xa|xb;ω) =
∫
Sm

P (x|xa;ω)∇GD0 (x|xb;ω) · n ds, (39)

shows a method to determine the wavefield above the measurement surface and below the free
surface from measured pressure on a typical surface.

The algorithm described by equation 39 does not require the normal derivative of the pressure
field. This method for wavefield retrieval or extrapolation was proposed by Weglein et al. (2000)
and Ramı́rez et al. (2007). However, it has an error of −A(ω)GD0 (xa|xb;ω), which, according to
Tan (1992) and Weglein et al. (2000), for the typical surface seismic exploration source-receiver
configurations and frequency content is small.
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Equation 39 also has applications in source signature estimation (Osen et al., 1998; Tan, 1999)
and deghosting(Amundsen et al., 2005; Zhang and Weglein, 2005, 2006). The result for wavelet
estimation, as well as the analogous results in the previous sections using different Green’s function,
shows that when the receiver level is below the sources, there exists a triangle relationship between
the pressure, its normal derivative, and the source wavelet. In order to theoretically calculate
any one of these quantities, the other two must be known (Weglein and Secrest, 1990; Amundsen,
2001). Green’s theorem with a Dirichlet Green’s function apparently overcomes the need of a third
quantity, the normal component of the particle velocity. However, it does not break the triangle
relationship, since an extra pressure measurement at any point above the measurement surface and
below the free-surface is needed. The extra measurement is, in general, not available and a possible
solution is to introduce an approximation that alters equation 39 as described in Guo et al. (2005).

If an estimate of the wavelet is available, or obtainable, the error in equation 39 for seismic inter-
ferometry can be easily removed, by adding a factor of A(ω)GD0 (xa|xb;ω). This will give an exact
equation. The only limitation for a ‘perfect’ output would the effect of the aperture limitations
in the recorded pressure data. The rest of the ingredients required by Green’s function would be
fulfilled analytically.

When the wavelet is not available and it is possible to separate the direct wave from the scattered
field (e.g. in a deep water experiment), we can find an exact equation for reconstructing scattered
field that does not need the source wavelet. It is given by the second case in equation 38.
Substituting P s(xa|xb;ω), the scattered field, into Green’s theorem (instead of the total wavefield),
and using the two surface Dirichlet Green’s function as the second function,

P s(xa|xb;ω) =
∫
Sm

P s(x|xa;ω)∇GD0 (x|xb;ω) · n ds, (40)

is obtained. This is possible because the scattered field satisfies the wave equation without a source
function, (

∇2 +
ω2

c2(x)

)
P s(x|xa;ω) = 0. (41)

Hence, only the observation point lies within the volume V . This form of Green’s theorem does not
require the normal derivative of the pressure field, nor the source signature. It only asks for the
scattered field, or the pressure field due to sources outside the medium, and an analytic Green’s
function that vanishes at the measurement and air-water surface.

The 3D data used to test direct wave seismic interferometry in section , was also used to test
Green’s theorem with a two-surface Dirichlet Green’s function. The second configuration, figure
12, was used. Two different tests were made. The first one, used total pressure field as input
data to equation 39. The second test used scattered field as input to equation 40. The output is
shown in figure 15. The reconstructed data, for both examples corresponds to a line consisting of
12 sources at zero crossline offset, sources from the input data, and 12 receivers in a line at 100 m
crossline offset (dashed line in figure 12). The reconstructed data on the left represent the second
test and the data in the middle correspond to the first test. Modeled data is displayed on the right
hand side of figure 15 for comparison.

38



Green’s theorem as a comprehensive framework for seismic processing MOSRP07

Figure 15: Green’s theorem with a double Dirichlet Green’s function. The input for the figure on the left
was scattered field. The input for the middle figure is total wave field. The figure on the right
is modeled data.

In this section, it was shown that certain choices of functions and boundary conditions in Green’s
theorem can help to avoid specific requirements and assumptions made by other methods with
similar purposes. An example of this requirement, is the pressure field’s normal derivative required
to satisfy the methods for wavefield retrieval and wavelet estimation discussed in the previous
sections in this tutorial. The wavefield’s normal derivative was approximated twice for standard
seismic interferometry and once for direct wave seismic interferometry. Using a Dirichlet boundary
condition imposed upon the Green’s function used in Green’s theorem, the approximation is not
necessary, and a wavefield reconstruction method is achieved, only requiring measurements of the
pressure field. For the calculation of the Dirichlet Green’s function, the volume and its boundaries
must be located within a known medium. Hence, this theory is ideal for marine surface seismic
acquisitions, where pressure measurements exist within the water column. However, this is a
very special situation. There are circumstances when Green’s function with a Dirichlet boundary
condition is not available (or it cannot be calculated analytically). Hence, it is not possible to
overcome a requirement of the pressure field’s normal derivative when the medium inside the
volume is unknown. An example of this situation is in the derivation of the virtual source method
by Bakulin and Calvert (2004) and Korneev and Bakulin (2006) as well as in the derivation of
wavefield deconvolution by Amundsen (2001).
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Wavefield deconvolution and the virtual source method

In this section we discuss two methods to retrieve the wavefield between two receivers located at
the water bottom or beneath the subsurface in a seismic experiment. These methods are wavefield
deconvolution and the virtual source method. Both methods are based on Green’s theorem and,
in principle, both of them require dual measurements. In practice, the first method, wavefield
deconvolution, is applied using both the pressure and its normal derivative measured in a seismic
experiment (e.g. in OBC acquisitions). On the other hand, virtual source method is applied using
only the pressure field, in clear analogy with other common seismic interferometry methods.

Besides the approximations and their effect on the retrieved wavefield, virtual source has another
important difference with wavefield deconvolution: virtual source aims to retrieve the total wavefield
between two receivers located beneath the subsurface while wavefield deconvolution retrieves the
deconvolved wavefield for a coincident source-receiver experiment at the receiver location. Decon-
volution refers to the removal of overburden effects and overburden refers to the medium above the
receiver or measurement plane. In the following we are going to discuss the wavefield deconvolution
method and then relate it to the virtual source method.

As discussed in the introduction for this dissertation, in a marine experiment there exist events
that owe their existence to the presence of the air-water surface. These events are known a ghosts
and free-surface multiples. In general, these events are removed from the data since they are not
used for further processing. Imposing a specific selection of boundary conditions upon the pressure
field and the Green’s function, used in Green’s theorem, we can find a formalism that eliminates
the free-surface multiples and the wavelet from the pressure field (Amundsen, 2001; Holvik and
Amundsen, 2005).

In wavefield deconvolution, two mediums are selected:

1) A medium corresponding to a physical seismic experiment in a marine setting (shown on the
left hand side of figure 16), it consists of the Earth, a layer of water and a half space of air. The
position xs denotes the location of the source (a source array could also be chosen) and xr is the
receiver location.

2) A medium corresponding to a hypothetical experiment (shown on the left hand side of figure 16),
it consists of the Earth and a half space of water (no free-surface). The position xs is the receiver
location and xr is the source location.

The pressure field, P , propagates in the first medium and a second pressure wavefield P ′ propagates
in the second or ideal medium. Both pressure fields satisfy equation 4. A Dirichlet boundary
condition is imposed to P . The volume selected to evaluate Green’s theorem is shown in figure 16.
It is bounded by the surface S0 (where the different boundary conditions are imposed) and the
surface SR which is assumed to be at infinity (due to the Sommerfeld radiation condition, receives
at Sr give zero contribution to the surface integral in Green’s theorem). Using the pressure fields
P and P ′ as u and ν in Green’s theorem, equation 3, gives∫

V

(
P (xr|xs;ω)A′(ω)δ(x− xs)− P ′(xs|xr;ω)A(ω)δ(x− xr)

)
dx
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=
∫
S0

[−P ′(x|xr;ω)∇P (x|xs;ω)] · n ds.

Evaluating the volume integral, we obtain an integral relation describing the relation between the
experiments with and without a free-surface:

A′(ω)P (xr|xs;ω)−A(ω)P ′(xs|xr;ω) = −
∫
S0

P ′(x|xr;ω)∇P (x|xs;ω) · n ds. (42)

This integral equation has been derived and used for free-surface elimination by Fokkema and
van den Berg (1993) and Amundsen (2001), among others. In contrast to the previous solutions of
Green’s theorem derived in this work, the relation described by equation 42 is not a relation that
can be readily applied to retrieve a useful result. The solution of the problem is the wavefield P ′

and it cannot be retrieved from the previous equation unless more mathematical manipulations are
done. There are different mathematical manipulations that have been used to exploit equation 42
(the interested reader is referred to Fokkema and van den Berg (1993); Amundsen (2001) and
references within). The method selected by Amundsen (2001), assumes that the pressure field is a
sum of upgoing and downgoing waves,

P (xr|xs;ω) = u(xr|xs;ω) + d(xr|xs;ω) (43)

and introduces the relations

u(kr, zr|xs;ω) =
1
2

(
P (kr, zr|xs;ω)− ρω

kz
∇P (kr, zr|xs;ω) · n

)
, (44)

and

d(kr, zr|xs;ω) =
1
2

(
P (kr, zr|xs;ω) +

ρω

kz
∇P (kr, zr|xs;ω) · n

)
(45)

where u and d refer to upgoing and downgoing, respectively, kr is the horizontal wavenumber
conjugate to the horizontal coordinates (x1r, x2r), kz is the vertical wavenumber conjugate to z,
and zr = x3r is the receiver depth. Equation 42 requires the normal derivative of the pressure field
P at the free-surface. Amundsen (2001) redatumed the normal derivative of P in the wavenumber
domain, to obtain its values at the free-surface, and introduced the relations in equations 43 − 45,
to obtain a second integral equation:

A′(ω)P (xr|xs;ω) = − 1
2π2

∫ ∞

−∞
(ikz)P ′(−k, zr|xr;ω)d(k, zr|xs;ω) · n ds.

where the integral is taken over the horizontal wavenumber k. This result is a Fredholm in-
tegral equation of the first kind. This is an equation difficult to solve and in general it is ill-
conditioned (Amundsen, 2001). However, when the medium is 1D (horizontally layered), a much
simpler solution is found,

P ′(−k, zr|χs = 0, zr;ω) =
−A(ω)
2ikz

P (−k, zr|χs = 0, zr;ω)
d(−k, zr|χs = 0, zs;ω)

, (46)
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or

P ′r(−k, zr|χs = 0, zr;ω) =
−A(ω)
2ikz

u(−k, zr|χs = 0, zr;ω)
d(−k, zr|χs = 0, zs;ω)

(47)

where χs denotes the horizontal coordinates for the source position. It is set to zero because the
medium is laterally invariant. P ′ is the wavefield corresponding to an hypothetical experiment
without a free surface, and P ′r is the scattered field in that experiment. Hence, it is assumed that
P ′ can be separated in a direct arrival P ′0 and a scattered field P ′r.

The right hand side of equation 47 contains a wavelet factor of A(ω), this wavelet can be selected to
be different from the original. Furthermore, A(ω) can be set to be equal to unity, and the retrieved
wavefield won’t have any source signature, it will be the pressure wavefield due to an impulsive
point source.

The final result retrieves a wavefield without overburden effects, and with coincident source and
receiver positions. The wavefield retrieval is performed by deconvolving the total pressure field P
with the downgoing part of P at the receiver location xr. It retrieves the wavefield for coincident
source and receiver locations at xr. Hence, it effectively creates a virtual source at xr. This
method can be applied to image beneath complex structures when receivers are locating within the
Earth. In those cases the removal of free-surface multiples will be extended to the removal of all
overburden effects in the retrieved wavefield. It is accurate when dual measurements exist at the
receiver location. It has been extended for an elastic medium by Holvik and Amundsen (2005).

As discussed earlier, wavefield deconvolution has similarities with the virtual source method derived
by Bakulin and Calvert (2004) and Korneev and Bakulin (2006), whose equation is given by a
simplification of equation 30. To derive the virtual source method, two pressure wavefields P and
P− are used as the functions u and ν in Green’s theorem, equation 3. The medium parameters
for both wavefields are assumed to be equal everywhere (see section 2.2 and 2.3), and the selected
volume is a halfspace in a seismic experiment, as shown in figure 17. The volume is bounded by a
surface S0 where the sources explode (which is not assumed to be a zero-pressure surface) and the
surface Sr that is assumed to be at infinity. This surface does not vanish when anticausal or time-
reversed wavefields are used (in this case we are using the conjugate or time-reversed pressure field),
but it is not possible to have sources or measurements along this surface, hence its contribution is
ignored. Evaluating Green’s theorem with this choice of functions and boundary conditions, gives

2iA(ω)= [P (xa|xb;ω)] ≈
∫
S0

[P (xa|x;ω)∇P−(xb|x;ω)− P−(xb|x;ω)∇P (xa|x;ω)] · n ds, (48)

where the sum is performed over source locations x.

This equation is analogous to equation 29 derived in section 2.3. The differences are in the selected
volume and surfaces taken into account and the location of the receivers. In virtual source method,
the receivers are assumed to be below a complex overburden.

As in the traditional seismic interferometry, discussed in section 2.3, the wavefield’s normal deriva-
tives are assumed not to be available, and a one-way wave high frequency approximation is applied,

2iA(ω)= [P (xb|xa;ω)] ≈
∫
Sm

−2ik P (x|xa; t)P−(x|xb;ω) dx. (49)
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The seismic interferometry equation is further approximated by assuming ∇P ·n ≈ P and ∇P− ·
n ≈ −P−, which results in

2iA(ω)= [P (xb|xa;ω)] ≈
∫
Sm

P (x|xa; t)P−(x|xb;ω) dx. (50)

This equation is a compromise to Green’s theorem, as explained by Korneev and Bakulin (2006).
Hence, errors and artifacts are anticipated.

Using the virtual source method an approximate wavefield retrieval at the receiver level is achieved.
In contrast to the more complete method (wavefield deconvolution), the overburden effects are not
removed. In fact, an extra power of the source signature multiplies the retrieved wavefield. The
advantage of the virtual source method is that it can be applied in the absence of the pressure
field’s normal derivative and an approximate wavefield is retrieved between two receivers located
below a complex overburden. The synthesized wavefield will contain useful phase information.

Figure 16: Volumes used in wavefield deconvolution.

Analysis

Certain choices of functions and boundary conditions in Green’s theorem provide a formalism to
avoid certain requirements and assumptions made by other methods and that are not always satis-
fied. When an assumption is not satisfied, the method can have shortcomings. For example, current
seismic interferometry makes two assumptions. The consequence is the creation of artifacts. Direct
wave seismic interferometry only make one approximation and its output is a clear improvement
over current seismic interferometry. Using a two-surface Dirichlet boundary condition imposed
upon the Green’s function used in Green’s theorem, a theory and algorithm for data reconstruction
is derived without the need for the pressure field’s normal derivative. There are no approximation
and the only limitation to the theory comes from practical circumstances such as limited data.
However, the method was tested with limited aperture data and it showed robustness. There is one
extra limitation, though, the two-surface Dirichlet Green’s function decays exponentially. Hence,
the reconstruction is limited to distances within the range of 0 − 200m approximately. This is
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Figure 17: Volume used in the virtual source method.

considering the seismic processing standard single precision calculations. This theory also requires
knowledge of the medium where the Green’s function is calculated. It is ideal for marine surface
seismic acquisitions, where pressure measurements exist within the water column. On the other
hand, there are circumstances when Green’s function with a two-surface Dirichlet boundary condi-
tion is not available (or it cannot be calculated analytically), but dual measurements exist. Such is
the case of the wavefield deconvolution theory. Wavefield deconvolution removes all the overburden
effects and retrieves coincident sources and receivers at the receiver location. The method was com-
pared to the virtual source method, which is very similar to current seismic interferometry in the
sense that it does not use the normal derivative of the pressure field, but a severe approximation.

Having a framework, allows us to review it and anticipate that things are not going to be as
accurate as we would like when we make compromises to the theory. This knowledge provides the
opportunity to correct the weaknesses (when possible) of any approximate method by going back
to first principles and attempting to better satisfy the framework instead of trying to create new
theory to correct the compromised output. With this understanding, Weglein et al. (2000) and
Ramı́rez et al. (2007) proposed a method for seismic interferometry that overcomes the need for
approximations. It requires only the pressure field at the measurement surface. It is exact if the
scattered field is provided. Otherwise, an estimate of the wavelet would be necessary to decrease
the occurrence of a small error in the synthesized wavefield.

Remarks

Most of the original, somewhat intuitive, interferometry methods were originally formulated to
work on passive data (Schuster, 2001). The closed surface boundary was formed by sources (i.e.
Earthquakes or ambient fluctuations) far away from the receivers (Shapiro and Campillo, 2004;
Sabra et al., 2005; Larose et al., 2006). Wavefield crosscorrelations were applied to pairs of receiver

44



Green’s theorem as a comprehensive framework for seismic processing MOSRP07

gathers and a noisy Green’s function was retrieved from that passive data originally seen as noise.
The theory that evolved from approximations to Green’s theorem or to the principle of time re-
versal came later to explain what was being reconstructed with crosscorrelations. (Derode et al.,
2003; Roux and Fink, 2003; Wapenaar et al., 2002; Weaver and Lobkis, 2004). New applications,
analysis, and results were obtained along the way, e.g. the virtual source method (Bakulin and
Calvert, 2004), VSP and WVSP applications (Schuster and Zhou, 2006; Otnes et al., 2006), con-
nections with energy principles (Snieder et al., 2007), imaging, multiple removal, etc. Nowadays,
seismic interferometry also considers the work by Claerbout (1968), which provided a formalism
for wavefield reconstruction in horizontally layered media, as an early interferometric formulation.
Lobkis and Weaver (2001) extended Claerbout’s early theory to allow for a 3D heterogeneous media
of nite extent (discrete frequency spectrum). Schuster (2001) gave the name seismic interferometry
to all the processing tools that perform wave field reconstruction through correlation. Derode et al.
(2003) and Roux and Fink (2003) proposed an alternative formulation for this technology using
the principle of time reversal. Wapenaar et al. (2002) overcame the need for nite media with the
one-way propagation representation theorem. Wapenaar (2004) and Weaver and Lobkis (2004)
gave an equivalent formulation for seismic interferometry using high frequency and one-way wave
approximations of the general representation theorem, which is a form of Green’s Theorem.

On the side of Green’s theorem, Weglein et al. (2000) proposed to use this mathematical theorem to
retrieve the total two-way wavefield anywhere above a typical towed streamer using measurements of
only the pressure field along the cables and imposing Dirichlet boundary conditions on the reference
Green’s function. This method does not make any approximations. Ramı́rez et al. (2007), (2007b)
and Ramı́rez and Weglein (2007) showed that the foundations of interferometry and virtual source
methods are found in Green’s theorem, explained the so-called spurious multiples as errors produced
by the approximations made by these methods, and extended those methods by proposing the use
of specific Green’s functions in Green’s theorem that require less or no approximations to the
framework. These more accurate formulations for Green’s function or wavefield retrieval include
the formulation originally proposed by Weglein et al. (2000) and successfully used by Zhang and
Weglein (2005, 2006) to reconstruct the normal derivative of the pressure field (using only pressure
measurements) and to subsequently perform pressure wavefield deghosting.

Conclusion

Green’s theorem (equation 3) is the theoretical basis that unifies a broad class of interferometry
approaches. This mathematical relation was derived by George Green in 1828 and has been widely
used during the past and present century in all kind of applications including almost any pro-
cessing step in seismic exploration (e.g. wavelet estimation, wavefield retrieval, imaging, wavefield
deconvolution, etc.). The attention given by the energy industry and the literature to methods
dealing with wavefield retrieval, or seismic interferometry, and its applications to different seismic
exploration problems, has brought about a renewed interest in Green’s theorem. The reason for
this is that all the different approaches to what we call seismic interferometry can be derived from
this single unifying framework: Green’s theorem (and its extensions by Betti (1872) and Rayleigh
(1873)).
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Throughout this tutorial, Green’s theorem was used to: 1) provide an overview of a broad set
of seismic applications that recognize Green’s theorem as the starting point of their theory and
algorithms;
2) show that Green’s theorem provides a platform and unifying principle for the field of seismic
interferometry;
3) explain artifacts, or spurious multiples, (in certain interferometry approaches) as fully anticipated
errors and as violations of the theory, rather than as some mystery or numerical manifestation that
ought to be explained with physics; 4) provide a systematic approach to understanding, comparing
and improving upon many current concepts, approximations and compromises.

In this tutorial, we presented a unifying framework for a broad class of interferometry techniques
using Green’s theorem. This framework and starting point serves several important purposes. One
purpose and benefit is that much of what has been published as breakthrough new “interferometric
principles” and “fundamental new theorems” and new “virtual sources” are really much less than
profound new concepts and theories, but rather simply explained as approximate forms of Green’s
theorem. Furthermore artifacts observed and labeled as mysterious spurious multiples are neither
mysterious nor spurious. They are simply errors in properly applying Green’s theorem. That sounds
a lot less impressive. Green’s theorem and apparent inadvertent compromises that are violating
Green’s theorem in certain interferometric methods leads to those fully anticipated and precisely
predicted errors. Hence, recognizing Green’s theorem as a foundation allows errors and artifacts that
occur in certain compromised interferometry approaches to be anticipated and fully explained as a
consequence of approximations made within Green’s theorem. Green’s theorem provides a solid and
classic mathematical-physics foundation, well understood in the literature, to also systematically,
confidently and consistently step out from that cornerstone of clarity and clear derivation. With
Green’s theorem to point the way in this paper we develop a set of progressively improved and
practical approximate interferometric methods, that are then tested and demonstrated with added-
value and good effect in comparison with various standard interferometric forms and methods.

Appendix

High frequency and one-way wave approximation

The one-way and high frequency approximation proposed by Wapenaar (2004) to avoid the need
of the pressure field’s normal component could damage and change seriously the output of Green’s
theorem. This happens, for example, when we use Green’s theorem with a causal reference Green’s
function, G+

0 , and a measured pressure field, P , (section ). If we use the approximation

∇P (x|xa;ω)] · n ≈ ikP (x|xa;ω) (51)

in the surface integral required by Green’s theorem, we find a zero result independent of the position
of the source and observation point. This can be shown in a 1D situation, using equation 51 to
approximate the normal derivative in the surface integral of Green’s theorem, and a 1D reference
Green’s function for an experiment with a free surface,

G+(z|zb, ω) =
eik|z−zb|

2ik
− eik(z+zb)

2ik
, (52)
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obtaining ∫
Sm

[P (x|xa;ω)∇G+
0 (x|xb;ω)− G+

0 (x|xb;ω)∇P (x|xa;ω)] · n ds

≈
∫
Sm

[P (x|xa;ω)∇G+
0 (x|xb;ω) · n− G+

0 (x|xb;ω)ikP (x|xa;ω)] ds. (53)

Evaluating the normal derivative of the reference Green’s function with the approximation gives
zero, ∫

Sm

[P (x|xa;ω)ikG+
0 (x|xb;ω)− G+

0 (x|xb;ω)ikP (x|xa;ω)] ds = 0, (54)

independent of the positions xa and xb relative to the volume enclosed by S. Numerical tests in
3D also confirm this result.

Appendix

Seismic interferometry

The original equation derived by Wapenaar (2004) for seismic interferometry used the reciprocal
experiment of the one presented in this dissertation. In their derivation, two receivers inside the
volume were surrounded by sources at S. Using source-receiver reciprocity, the standard interfer-
ometry equation is

2i= [P (xb|xa;ω)] ≈
∫
Sm

−2ik P (xa|x;ω)G−(xb|x;ω) dx, (55)

where xa and xb are receiver positions, and x corresponds to source positions at the surface Sm.
To be consistent with the rest of this work, we will continue with the previous notation where xa

and xb represent source locations and the surface integral is taken over receiver locations x at the
measurement surface.
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Abstract

We report on the ongoing 3D free-surface multiple elimination code implementation project. We
are at the stage of testing and validation of the code. The effort has been collaborative, involving
data used by permission from WesternGeco and Statoil-Hydro and Lawrence Livermore National
Lab, and computing knowledge and resources from ConocoPhillips.

Background

In 2006 an early-stage 3D implementation of the free-surface multiple elimination algorithm (Car-
valho, 1992; Weglein et al., 1997), was written by Sam Kaplan, extending the previous M-OSRP
2D implementation (Kaplan et al., 2005). Through a set of collaborative efforts, we are in the
process of validating and testing the code in preparation for distribution to the sponsors. In aid of
this effort, WesternGeco, through Bill Dragoset, has facilitated our use of a 3D synthetic data set
co-owned by Statoil-Hydro and Lawrence Livermore National Lab to be used in the validation and
testing. ConocoPhillips, through Paul Valasek, Brian Macy and Phil Anno, has put computing
knowledge and resources to the testing and validation. We have benefited greatly from, and are
very grateful for, the efforts that have been expended in this ongoing project.

Status and plan

When its pre-requisites are in place, the free-surface multiple elimination (FSME) algorithm pre-
dicts the exact phase and amplitude of all orders of free-surface multiple in 3D seismic reflection
data (Weglein et al., 1997). If the data contain ghosts or the source wavelet, the phase of the
predicted multiples will be correct, but the amplitudes will be affected. The synthetic data set,
meanwhile, is 2.5D, meaning it is constructed with point sources and point receivers placed above a
medium that is invariant in one lateral dimension. As such, it contains 3D multiples, but we point
out that with a specific re-sorting of the data that simulates sail lines at an angle to the subsurface
variations, the “3D-ness” of these multiples can be greatly enhanced. Finally, the data contain
ghosts and a source wavelet.

These facts lead to a natural hierarchy of testing and validation goals. Arranged in order of
increasing ambition:

1. Leaving the data in its current (actual) geometry and leaving the wavelet and ghosts in the
data, demonstrate the correct prediction of the phase of the 2.5D multiples.
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2. Simulating sail lines at an angle to the subsurface variations, and leaving the wavelet and
ghosts intact, demonstrate the correct prediction of the phase of the “maximally 3D” multi-
ples.

3. Leaving the data in its current (actual) geometry and removing the wavelet and ghosts,
demonstrate the correct prediction of the phase and amplitude of the first-order multiples.

4. Simulating sail lines at an angle to the subsurface variations, and removing the wavelet
and ghosts, demonstrate the correct prediction of the phase and amplitude of the first-order
“maximally 3D” multiples.

We are currently completing item 1. above. A small example follows. In Figure 1 we illustrate
some receiver lines extracted from the full synthetic data set. For each shot location we extract a
patch of receivers (72 in the in-line dimension, by 3 in the cross-line dimension). We repeat this
for a patch of shots (72 in the in-line dimension, by 3 in the cross-line dimension). The cross-line
sampling is 12.5m, and the in-line sampling is 25m. In Figure 2 we illustrate the corresponding
predictions. In Figure 3 we illustrate side-by-side detail. The small but noticeable time difference
between the predicted and the actual is a consequence of the wavelet.

This is a tentative confirmation of goal 1; we have encountered some issues as the size of the
extracted data grows, related to the parallel (MPI) sorting component of the code. A larger, more
complete data set will be tested subsequently to complete this phase.
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Figure 1: Extraction from the synthetic data set.
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Figure 2: Prediction result.
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Figure 3: Comparison of synthetic data and prediction.
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Abstract

Primaries are the main source of subsurface information in seismic exploration. The ability to
estimate and remove overburden transmission effects on these events determines the level of
realistic ambition in extracting such information concerning the target reflection at depth. In
this paper we address this primary amplitude correction problem, using internal multiples. The
inverse scattering series internal multiple attenuation algorithm suppresses internal multiples to
within an amplitude error that is determined by plane wave transmission losses down to, and
across, the reflector where the first order internal multiple experiences its downward reflection.
This may be exploited to remove those overburden transmission effects; the impact is partic-
ularly striking for absorptive media. We demonstrate the construction of primary amplitude
correction operators using combinations of multiples and their respective predictions with sim-
ple synthetic examples. We identify fundamental research into the amplitudes of the internal
multiple predictions in 2D and 3D media as a pre-requisite to field data application of this
concept-level algorithm.

1 Introduction

A primary is a recorded seismic event with one upward reflection. This event is considered the
source of subsurface information for structural mapping, parameter estimation, and, ultimately,
petroleum delineation at the target. In all current leading-edge processing of primaries, the ability
to infer useful information at depth critically depends upon the ability to estimate and to remove
the effect of the overburden on the character of the wave during propagation. The ability to effec-
tively estimate (and remove) these effects determines the level of realistic ambition in subsequent
processing of primaries. In this paper we propose an approach to this problem that involves the
prediction and attenuation of internal multiples.

The problem we address is conceptually straightforward. Most primaries of interest (Figure 1)
have amplitudes characterized by both the contrast in material properties at the point of reflection
(via the reflection coefficient), and the downward and upward legs of propagation through the
overburden. Roughly put:

Primary = [Transmission Down]× [Reflection]× [Transmission Up].

Methods for determination of material properties at depth (via, e.g., some form of AVO analysis)
are helped by the former and hindered by the latter. We seek a corrective operator,

Corrective Operator = ([Transmission Down]× [Transmission Up])−1,
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such that, when it is applied to the raw primary, leaves only the local reflection coefficient intact,
and prepares the event for further inverse processing:

Corrected Primary = [Reflection].

Transmission
Down Transmission

Up

Reflection

Primary

Figure 1: Sketch of a primary. Amplitudes are determined by the material property contrast at the point of
reflection, and propagation down and back through the overburden.

We will provide a framework for determining such operators using an algorithm for the attenuation
of multiples. The inverse scattering series has provided a set of algorithms for the removal of all
orders of free-surface and internal multiples (Weglein et al., 1997, 2003). Within the overall class
of events referred to as internal multiples, events are further catalogued by order, i.e., the number
of downward reflections experienced. The algorithm of Araújo (1994) and Weglein et al. (1997) is
a series for the attenuation of all orders of internal multiples, the first term of which attenuates
the first-order event. It is to this first term that we direct our current attention. In practice, this
component of the full algorithm has often been fully adequate. However, there are occasions when
an elimination rather than attenuation algorithm would provide distinct added value. Ramirez
and Weglein (2005a) have provided a closed-form elimination algorithm for the first-order internal
multiple to fill this requirement. Concurrently the algorithm has been refined (Nita et al., 2004)
and efficiently implemented in multiple dimensions for large data sets (Kaplan et al., 2005). These
two algorithms (attenuation and elimination), and the known properties of the former (Weglein
et al., 1997; Weglein and Matson, 1998; Ramirez and Weglein, 2005b), may be exploited to address
the problem we have posed above.
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The key is that the amplitude discrepancy between the actual first-order internal multiple and
the output of the attenuator is a direct expression of plane wave transmission loss down to and
across a particular reflector. The information provided by the internal multiple algorithm is, in
fact, inherently a correcting factor for certain primaries associated with that reflector. The logical
development in this paper is entirely geared towards performing the slight manipulations necessary
to carry out the correction. The results are particularly striking if the overburden corrupting the
amplitude of the primary in question is absorptive.

Let us be more specific about the motivation for pursuing an amplitude corrector of this kind.
The ambitious goal of separation and extraction of a well-located and accurate angle-dependent
reflection coefficient at depth is typically hindered by the experience of the primary wavefield as
it propagates through an unknown overburden, which conceals the event with spurious amplitude
changes. Contemporary methodologies to counter these effects are generally inconsistent with wave
theoretic processing, and rarely go forward without a well-tie. There are additional potential ben-
efits. First, the information is a byproduct of an existing part of the wave-theoretic processing
flow–the de-multiple phase–and comes at no additional cost. Second, this information becomes
available at a convenient point during processing, just prior to its likely use in primary process-
ing/inversion. Third, it is consistent with wave-theoretic processing. Fourth, it is not restricted to
a production setting, but is also applicable in reconnaissance and exploration settings.

This paper presents and illustrates these concepts in the following way. In Section 2, we review the
internal multiple attenuation algorithm, and the existing results characterizing the amplitude of the
prediction, and extend those results to incorporate absorptive media. In Section 3 we manipulate
these expressions of the prediction error, demonstrating that, when combined recursively, they
produce correction operators of the kind we describe, ready for multiplicative application to specific
primaries, which will have to be separated out in the data. In particular we distinguish between
the correction procedures necessary in acoustic/elastic vs. absorptive media. In Section 4 we
illustrate the procedure on synthetic data for the absorptive case, examining the form and effect
of the correction operators. Finally we conclude with remarks on a path forward for making this
conceptual approach practical.

2 Amplitudes predicted by the multiple attenuation algorithm

The inverse scattering series internal multiple attenuation algorithm (IMAA) (Araujo et al., 1994;
Araújo, 1994; Weglein et al., 1997, 2003) acts non-linearly on reflection seismic data to calculate
the exact phase and approximate amplitude of all orders of internal multiples:

b3IM (kg, ks, qg + qs) =
1

(2π)2

∫ ∞

−∞
dk1e

−iq1(zg−zs)

∫ ∞

−∞
dk2e

iq2(zg−zs)

×
[∫ ∞

−∞
dz′1b1(kg, k1, z

′
1)e

i(qg+q1)z′1

×
∫ z′1−ε

−∞
dz′2b1(k1, k2, z

′
2)e

−i(q1+q2)z′2
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×
∫ ∞

z′2+ε
dz′3b1(k2, ks, z

′
3)e

i(q2+qs)z′3

]
, (1)

where qg = sgn(ω)
√

( ωc0 )2 − (kg)2, qs = sgn(ω)
√

( ωc0 )2 − (ks)2, kg and ks are the horizontal wavenum-

bers conjugate to receiver and source coordinates (xg, xs), and ε is a small positive quantity. The in-
put for the IMAA is b1, which is created from the pre-stack reflection seismic data. It is constructed
as follows. The surface recorded data, deghosted and without free surface multiples, D(xg, xs, t),
is Fourier transformed over all variables, to produce D(kg, ks, ω). A change of variables is made,
to D(kg, ks, qg + qs), after which b1 is defined as b1(kg, ks, qg + qs) = D(kg, ks, qg + qs)(2iqs)−1, and
inverse Fourier transformed over qg + qs to pseudo-depth. The result, b1(kg, ks, z), is used as input
in equation (1), and the output, b3IM , is the predicted internal multiple data set, produced without
knowledge of earth material properties or structure and it accommodating all earth model types
that satisfy the convolutional model (Ramirez and Weglein, 2005b).

2.1 The relationship between the predicted and the actual multiple amplitude

Weglein and Matson (1998) and Ramirez and Weglein (2005b) examined the difference between
the actual amplitudes of internal multiples and those of the IMAA predictions. This discrepancy,
which the latter authors described in terms of an amplitude factor, is related to the transmission
coefficients down to and across the multiple generator interface, and can be understood intuitively
by considering the way the algorithm predicts multiples. Consider Figure 2. On the left panel we
sketch an internal multiple and the three primaries that are used in the algorithm to predict it. The
generator is interface 2. The multiple has the path abcdijkl. The algorithm predicts the multiple
by multiplying the amplitudes of the three primaries, adding the phases of the deeper two, abcdef
and ghijkl, and subtracting the phase of the shallower, ghef . The phase of the actual multiple
and the predicted multiple are therefore identical. However, the amplitude of the actual multiple,

TabTbcRcd(−Rhe)RijTjkTkl,

and the multiplied amplitudes of the primaries in the prediction,

[TabTbcRcdTdeTef ]× [TghRheTef ]× [TghThiRijTjkTkl],

clearly differ in that the actual multiple does not experience the transmission history of the shallower
primary. That is, the terms Tde, Tef , Tgh, Thi in the prediction are extraneous. We note that this
includes transmission across the generating interface. This is the source of the amplitude error in
the algorithm.

Let us next depart from schematics and consider the general accounting of this behavior for pre-
dicted multiples within an arbitrary stack of layers by Ramirez and Weglein (2005b). Figure 3
shows a 1-D acoustic model consisting of three reflectors, the lower two of which have associated
reflection coefficients R1 and R2, and layer velocities c0, c1 and c2. The transmission coefficient
from layer i to layer j is Tij . For example, a multiple generated at interface 1 in Figure 3 has an
amplitude

M1 = [T01T12R2(−R1)R2T21T10]. (2)
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Figure 2: Schematic diagram of primaries and internal multiples in a stratified medium. Left panel: an
internal multiple and the primary subevents used to predict it. Middle and right panels: associated
primaries whose amplitudes may be corrected using the discrepancy between the amplitudes of the
predicted and actual multiple on the right.

The predicted multiple amplitude is:

MPRED
1 = [T01T12R2(−R1)R2T21T10][(T01T10)2(T12T21)]. (3)

Comparing equations (2) and (3) we see that their ratio, as we now intuitively expect, carries
information about the transmission coefficients down to and across the multiple generator interface.
Ramirez and Weglein (2005b) refer to this ratio as the amplitude factor AF:

AF2 =
MPRED

1

M1
= [T01T10]2[T12T21]. (4)

The index 2 anticipates our later use of this factor for corrective purposes, and signifies that
the second interface is the generator. With this terminology the amplitude factor expressing the
discrepancy between the predicted and actual amplitudes of an internal multiple generated at the
j’th interface in a stack of layers is

AFj =
{
T01T10 for j=1;∏j−1
i=1 (T 2

i,i−1T
2
i−1,i)Tj,j−1Tj−1,j for 1 < j < J,

(5)

where J is the total number of interfaces in the model. Presently we will manipulate this factor to
become a correction operator for primary amplitudes.
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Figure 3: A further multiple and subevent schematic suitable for general description of the amplitude prop-
erties of the internal multiple attenuation algorithm.

2.2 Extension of the amplitude analysis to absorptive media

Ramirez and Weglein (2005b) assume an acoustic medium, in which plane-wave transmission losses
are local, occurring at the point at which the wave crosses a contrast in material properties. For an
absorptive stack of layers, in which transmission loss occurs over the entire course of propagation, a
slight extension of their results is required. In later sections we will see that this minor theoretical
alteration leads to major practical differences when the predicted-actual amplitude discrepancy is
exploited.

In order to study the transmission coefficients in an anelastic medium we select an intrinsic attenu-
ation model to describe amplitude and phase alterations in a wave due to friction. These alterations
are modeled by a generalization of the wavefield phase velocity to a complex, frequency-dependent
quantity parameterized in terms of Q. A reasonably well-accepted Q model (Aki and Richards,
2002) alters the scalar propagation constant of the j’th layer, kj = ω/cj(z), to

kj =
ω

cj(z)

[
1 +

F (ω)
Qj(z)

]
, (6)

where F (ω) = i
2 −

1
π log (ω/ω0). The reference frequency ω0 may be considered a parameter to

be estimated, or assumed to be the largest frequency available to a given experiment. The model
divides propagation into three parts: a propagation component, an attenuation component, and a
dispersion component.

With this new definition of kj , and assuming that in Figure 3 the two bottom layers are anelastic,
we again construct the prediction. It is convenient to re-define the transmission coefficient of a
given interface to incorporate absorptive amplitude loss within the layer above that interface. For
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instance, the coefficients T12 and T21 of the previous section are altered to become

T12 =

 2c2
(
1 + F (ω)

Q2

)−1

c1

(
1 + F (ω)

Q1

)−1
+ c2

(
1 + F (ω)

Q2

)−1


Q in overlying layer︷ ︸︸ ︷
e
− ω

2Q1c1
(z1−z0)

e
iω

πQ1c1
log( ω

ω0
)(z1−z0) (7)

T21 =

 2c1
(
1 + F (ω)

Q1

)−1

c2

(
1 + F (ω)

Q2

)−1
+ c1

(
1 + F (ω)

Q1

)−1

 e
− ω

2Q1c1
(z1−z0)︸ ︷︷ ︸

Q in overlying layer

e
iω

πQ1c1
log( ω

ω0
)(z1−z0)

. (8)

We make particular note of the dependence (via the attenuation component) of this definition of
transmission coefficients on the thickness of the layer overlying the interface in question.

With this extension, we have essentially the same amplitude factor, for instance AF2, in the anelastic
case as we did in the elastic case. By analogy with equation (4):

AF2 = [T01T10]2T12T21. (9)

Provided that this re-definition of the absorptive transmission coefficients is adopted, the amplitude
factors and internal multiple attenuation error analysis for the general absorptive stack of layers at
normal incidence is given again by equation (5).

3 Correction of primary amplitudes using internal multiples

Let us make two comments about the amplitude error analysis above. First, we see that the
discrepancy between the predicted and the actual multiple for a given generator is directly related
to the transmission losses experienced by a primary associated with that generator. Second, we
note that the discrepancy, characterized by the amplitude factor AF, is available directly from
the data and the output of the IMAA. In this section we use the information in the various AF
factors as a direct means to correct the amplitude of the primary associated with the generator for
transmission effects, in the sense we have put forward in the introduction.

Next we define what will become the primary correction operator, PCO, to be built recursively
from the data-determined AFs:

PCOn ≡
PCOn−1

AFn
, (10)

with the terminating definition
PCO0 = 1. (11)

Expanding this operator over several orders n clarifies that it will indeed act as a correction operator
when applied to a primary whose upward reflection has occurred near the n’th interface. We find
that precisely which primary is best corrected with the n’th operator depends on whether we believe
the medium is or is not absorptive. In delineating this, we find it useful to index primaries from 0
upward. In the scheme in Figure 2, the 0’th primary reflects upward at interface 1.
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3.1 Correction of primaries in acoustic/elastic media

Consider once again the multiple sketched in Figure 2, whose generator is interface 2. Setting
n = 2, expanding equation (10), and employing the alphabetical indices we used in the figure, we
have

PCO2 =
1

TghThiTdeTef
. (12)

If the medium is acoustic/elastic, we note that for the primary depicted in the middle panel of
Figure 2, the last overburden effect on the event before the reflection at interface 3 is the transmis-
sion through interface 2, and the first overburden effect on the event after the reflection is again
transmission through interface 2. Consequently, PCO2 is exactly appropriate as an operator to
correct this (middle panel of Figure 2) primary. More generally, in the acoustic/elastic case, the
operator PCOn in equation (10) corrects the n’th primary, leaving the n’th reflection coefficient
“bare”, and suitable as input to other inverse procedures:

Rn = PCOn × Pn. (13)

3.2 Correction of primaries in absorptive media

Next, let us suppose that the medium in Figure 2 is absorptive, and again consider PCO2. Recall
that we may maintain the same form for the amplitude discrepancy between predicted and actual
multiples in absorptive media, and thereby this operator PCO2, provided we alter the transmission
coefficients of a given interface to include absorptive propagation through the layer above that
interface.

With this arrangement PCO2 is evidently no longer appropriate as an operator to correct primary 2,
i.e., the primary depicted in the middle panel of Figure 2, because it does not account for absorptive
propagation through the layer between the reflection and the multiple generator.

To maintain the usefulness of the operator, we instead make an approximation. We state that in an
absorptive medium, the effect of the local transmission coefficient at a boundary on the amplitude
of a primary is dwarfed by the effect of absorptive propagation. With that assumption we may
simply change the primary being corrected by PCO2 to the one depicted in the right panel of Figure
2. This statement is true to within the combined local transmission coefficient down and up across
interface 2. More generally, in the absorptive case, the (now frequency-dependent) operator PCOn

in equation (10) corrects the n− 1’th primary:

Rn−1(ω) = PCOn(ω)× Pn−1(ω). (14)

4 Synthetic examples

In this section, we illustrate with simple synthetic examples the steps necessary to correct a primary
for absorptive transmission losses, using a multiple and the IMA algorithm prediction. We generate
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zero-offset traces from three layered models with the geometry of the model in Figure 3, assuming
the waves behave in accordance with the propagation constant in equation (6), and using layer
parameter values in Table 1. We include the two primaries and the first order internal multiple.
The traces are wavelet deconvolved, and bandlimited (3–50 Hz). Figure 4 shows the traces generated
for each model, which differ in their Q values, ranging from relatively low attenuation to relatively
high attenuation. The arrival times of the two primaries and the multiple are approximately 1.5s,
2.3s and 2.9s, respectively.

Depth (m) c (m/s) Q1 Q2 Q3

000-300 1500 ∞ ∞ ∞
300-480 2200 200 100 50
480-855 2800 100 50 25
855-∞ 3300 50 25 10

Table 1. Absorptive Earth models.

With the knowledge that the medium is absorptive, and in accordance with our arguments in the
previous section, we use the predicted multiples to correct the amplitude of the shallower primary.
We do so as follows.

1. We use each trace as input to the internal multiple attenuation algorithm, generating predic-
tions of the internal multiples.

2. We isolate and calculate the spectra of each internal multiple and its prediction.

3. We take the reciprocal of the ratio between the spectra of each internal multiple and its
prediction. By equation (10), this is the appropriate correction operator PCO.

4. We isolate the shallower primary, and apply the operator to its spectrum of the primary.

We compare the result to an equivalent primary which we model in the absence of all transmission
through the overburden.

Figure 5 illustrates the uncorrected, shallower primary from each of the three models. We predict
the multiple with the attenuation algorithm, and isolate both this prediction and the original
multiple from the trace, and compute their spectra (Figure 6). The prediction spectra evidently
have experienced a greater level of attenuation in comparison to the actual multiple spectra. This is
in agreement with the extra transmission paths involved in the prediction, as discussed above, and
the frequency dependence of this discrepancy will form the basis for the correction of the shallower
primary, which will have a distinct Q-compensation flavor. Figure 7 illustrates the spectra of the
primary correction operators derived from these quantities, and Figure 8 illustrates the spectra
of the shallower primaries for each model, before and after the correction. The recovery of high
frequencies is notable. In Figure 9, we illustrate the corrected primaries after inverse Fourier
transforming to the time domain, and compare the results against their idealized counterparts
constructed without transmission losses. Figures 10 to 12 illustrate in close succession the original
primary in the data (top panel), the corrected primary (middle panel) and the idealized primary
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(bottom panel), for all models. We point out that the discrepancy between the corrected primaries
and idealized primaries is of a form and magnitude expected given the approximation associated
with correcting primaries in an absorptive medium (Section 3).
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Figure 4: Data generated for the numerical tests comprised of two primaries and one multiple for all models.
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Figure 5: Primary generated at interface 1 for all models. These are the events to be corrected for trans-
mission losses using the discrepancy between the actual multiple generated at interface 1 and its
prediction.
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Figure 6: The spectra of the multiple and its prediction from the IMA algorithm. The ratio of each pair
of curves will be used for creating an operator for correcting the primaries for their transmission
losses.
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Figure 7: Operators for correction of the primaries for transmission losses, generated by taking the ratio
between the spectrum of the actual multiple and its prediction in Figure 6.
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Figure 8: Spectra of the original primaries and the corrected primaries for each model. The corrections
were accomplished using the operators depicted in Figure 7.
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Figure 9: The corrected primaries.
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Figure 10: Correction results for the low attenuation case (Q = 200). Original primary (top panel), cor-
rected primary (middle panel), idealized result (bottom panel).
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Figure 11: Correction results for the medium attenuation case (Q = 100). Original primary (top panel),
corrected primary (middle panel), idealized result (bottom panel).
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Figure 12: Correction results for the high attenuation case (Q = 50). Original primary (top panel), cor-
rected primary (middle panel), idealized result (bottom panel).
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5 Conclusions

In this paper we have presented a procedure for correcting a primary for transmission losses using
internal multiples and the output of the inverse scattering series internal multiple attenuation
algorithm.

We have made particular mention and use of the a priori distinction between situations involving
significant absorption and situations that are largely acoustic or elastic. In spite of this broad
categorization (that we have found to be practically important), one of the strengths of the approach
is that it will act to correct transmission losses whatever their physical origin or mechanism, without
requiring a precise model. In this sense the approach is truly data-driven – the events in the data,
in comparison to one another, “decide” what the transmission loss must be.

Our simple numerical results are encouraging and motivate examination of the approach in the
presence of more complex media, both absorptive and otherwise. The main tool in this approach,
the internal multiple algorithm, is immediately applicable in multiple dimensions, and since the
amplitude error is in terms of plane wave transmission coefficients, a plane wave decomposition of
2D and/or 3D data will likely suffice to extend the method. Nevertheless, detailed extension of
the approach stands as ongoing and future research. For these reasons in particular, we identify
field data testing as a medium-term to long-term goal, contingent on the fundamental study of the
internal multiple attenuation amplitudes in multiple dimensions.
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Weglein, Arthur B., Fernanda V. Araújo, Paulo M. Carvalho, Robert H. Stolt, Kenneth H. Matson,
Richard T. Coats, Dennis Corrigan, Douglas J. Foster, Simon A. Shaw, and Haiyan Zhang.
“Inverse Scattering Series and Seismic Exploration.” Inverse Problems (2003): R27–R83.

Weglein, Arthur B., Fernanda Araújo Gasparotto, Paulo M. Carvalho, and Robert H. Stolt. “An
Inverse-Scattering Series Method for Attenuating Multiples in Seismic Reflection Data.” Geo-
physics 62 (November-December 1997): 1975–1989.

76



On shore project report I
Reference velocity sensitivity for the marine internal multiple attenuation
algorithm: analytic examples

S. Y. Hsu and A. B. Weglein

Abstract

In this note, we present a review of the inverse scattering series internal multiple attenuation
algorithm for land data (Matson, 1997). In particular, we look at internal multiple attenuation
since it is a dominant issue when processing land data. The requirements of four-component
data and reference velocity for a 2D earth is shown. Effects due to velocity errors includes
artifacts in the (P, S) data (Matson, 1997) and the algorithm’s sensitivity to reference velocity.
Two analytic examples for 1D normal incidence (Weglein and Matson, 1998) and 1D non-normal
incidence (Nita and Weglein, 2005) are used to demonstrate the inner working of this algorithm.
We extend their analysis to investigate velocity sensitivity. In conclusion, accurate near surface
reference velocities are essential to properly predict internal multiples except for the 1-D normal
incidence case.

Introduction

In seismic processing, primaries are considered signal. All other events, such as ghosts, free surface
multiples, and internal multiples, need to be removed. Many conventional methods have been
developed to remove multiples but most of them assume at least one of the following: (1) the earth
is 1D, (2) the velocity is known, or (3) primaries are random and multiples are periodic (Weglein
et al., 2003). When earth properties agree with these assumptions, the conventional methods are
effective. However, these assumptions are not always satisfied and hence the conventional methods
may be ineffective.

To overcome the limitations of these conventional methods, Carvalho (1992), Araújo (1994) and
Weglein et al. (1997) developed methods to perform free surface multiple removal and internal mul-
tiple suppression using the inverse scattering series. These methods do not require earth model and
leave primaries untouched. Their independence from subsurface information make these methods
effective while the conventional methods fail. Following previous work in the marine case, Mat-
son (1997) adapted the inverse scattering internal multiple attenuation algorithm from marine to
multi-component land data. Note that for marine data, the air-water interface can be viewed as
a perfect reflector; therefore, the free surface multiples dominate and need to be removed. On the
contrary, the interactions that take place at the air-land interface are mostly refraction-like rather
than reflection-like scattering. Hence, the internal multiples become dominant in the land date and
need to be removed.

As a preliminary step in considering inverse scattering series processing for land data, we present
a review of the elastic internal multiple attenuation algorithm (Matson, 1997), followed by two
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analytic examples of the attenuation algorithm. Matson’s work shows that the data requirements
for elastic internal multiple attenuation are line sources, four components, regularly sampled data,
known wavelets, and near surface velocities. The near surface velocity errors will have a noticeable
effect on the (P, S) decomposition (Matson, 1997). Another effect due to the velocity errors comes
form the algorithm’s sensitivity to reference velocity. In this note, two analytic examples are used
to demonstrate this issue. The 1-D normal incidence case will show that the inverse scattering
internal multiple attenuation algorithm is capable of predicting travel time and estimating ampli-
tude without actual velocity. In the non-normal incidence case, we demonstrate that using a wrong
reference velocity to predict internal multiples may not precisely obtain the total travel time. For
this reason, it is important to obtain accurate reference velocities to better perform the inverse
scattering internal multiple attenuation algorithm.

Background

We consider a set of elastic wave equations in the displacement domain,

Lu = f , (1)
L0u = f , (2)
LG = δ, (3)
L0G0 = δ. (4)

where L,L0,G, and G0 are the actual and reference differential operators and Green’s functions,
respectively, and u and f are the corresponding displacement and source terms.
The perturbation is defined as V ≡ L0 − L; the elastic Lippmann-Schwinger equation is

G = G0 + G0VG, (5)

which can be expanded in a forward series

G = G0 + G0VG0 + G0VG0VG0 + · · · . (6)

We define D as the measurement of the scattered field. Therefore

D = G − G0 = G0VG0 + G0VG0VG0 + · · · . (7)

The solution for V is in the form of a series,

V = V1 + V2 + V3 + · · · , (8)

where Vn is nth order in the measurement data, D. The expansion gives the elastic inverse scattering
series in displacement domain,

D = G0V1G0, (9)
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0 = G0V2G0 + G0V1G0V1G0, (10)
0 = G0V3G0 + G0V2G0V1G0 + G0V1G0V2G0 + G0V1G0V1G0V1G0, (11)

....

The scattering series in the elastic case has similar form as that in the acoustic case (Weglein et al.,
2003). However, in the elastic world the wave propagations are more complicated. In acoustic
reference medium only P waves can propagate. In the two dimensional elastic medium, the incident
P waves can give rise to P as well as S waves and vise versa, after interacting with the elastic
interface. Therefore, the displacement data usually consist of P and S waves. For convenience,
we transform the displacement into P and S wave potentials and decompose the displacement
operators (Green’s functions as well as perturbations) into the (P, S) domain (Weglein and Stolt,
1995; Matson, 1997).

We make use of decomposition

G0 = Π−1Γ−1
0 G0Π, (12)

V = ΠVΠ−1Γ−1
0 , (13)

where

G0 =
(
G0P 0
0 G0S

)
,Γ0 =

(
γ0 0
0 µ0

)
,Γ−1

0 =
(

1/γ0 0
0 1/µ0

)
, (14)

(15)

V =
(
VPP VPS
VSP VSS

)
,Π =

(
∂x ∂z
−∂z ∂x

)
,Π−1 =

1
∇2

(
∂x ∂z
−∂z ∂x

)
.

Here, G0P and G0S are pure P and S wave Green’s functions, and γ0 and µ0 are the strain
modulus and shear modulus, respectively. The Green’s functions G0P and G0S satisfy the scalar
wave equations

(∇2 +
ω2

α2
0

)G0P (xg, zg|xs, zs;ω) = δ(xg − xs)δ(zg − zs),

(∇2 +
ω2

β2
0

)G0S(xg, zg|xs, zs;ω) = δ(xg − xs)δ(zg − zs)
(16)

where α0 = (γ0/ρ)1/2 is the reference P wave velocity and β0 = (µ0/ρ)1/2 is the reference S wave
velocity. The solution for G0P and G0S are

G0P (xg, zg|xs, zs;ω) =
1
2π

∫ ∞

−∞

1
2iν

eik(xg−xs)eiν|zs−zg |dk,

G0S(xg, zg|xs, zs;ω) =
1
2π

∫ ∞

−∞

1
2iη

eik(xg−xs)eiη|zs−zg |dk

(17)

where ν = sign(ω)(ω2/α2
0 − k2)1/2 and η = sign(ω)(ω2/β2

0 − k2)1/2 are vertical wavenumbers for P
and S waves, respectively.
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The data in the (P, S) domain is

D = G0V1G0 =
(
G0P 0
0 G0S

)(
V 1
PP V 1

PS

V 1
SP V 1

SS

)(
G0P 0
0 G0S

)
=
(
DPP DPS

DSP DSS

)
.

(18)

The subscripts PP represents pure P waves, coming from the source, that are scattered into further
P waves which then propagate to the receiver. Similarly, the subscripts PS represents incoming S
waves, that are scattered and converted into P waves, propagating to the receiver.

Note that velocity errors have an effect on the (P, S) decomposition since it depends on derivatives
in the displacement space. In Fourier transform space, the horizontal derivative is a multiplication
by the horizontal wavenumber ik. The vertical derivative is a multiplication by iν or iη which
corresponds to the reference P wave velocity, α0, or the reference S wave velocity, β0, respectively
(Matson, 1997).

Elastic internal multiple attenuation

After decomposition, we now move to the internal multiple attenuation. Unlike the free surface
multiple removal, we cannot isolate the portion in the direct wave Green’s function Gd0 that exists
when the internal multiples are present and disappears when internal multiples are absent (Weglein
et al., 1997).

Evaluating the forward series in equation (7), the first two terms do not contribute to internal
multiples since there are less than three interactions between waves and reflectors. To begin to
construct internal multiples, the wave propagation has to be altered at least three times. Hence,
the first order internal multiple starts with the third term in the forward series. In general, the
(2n+ 1)th term in forward series is the leading term of the nth order internal multiple.

Similarly, the first two terms in the inverse series do not remove multiples. The internal multiple
attenuation starting with the third term in the inverse series, that is

Gd0V3G
d
0 = −Gd0V1G

d
0V1G

d
0V1G

d
0 −Gd0V1G

d
0V2G

d
0 −Gd0V2G

d
0V1G

d
0

= Gd0(V33 + V32 + V31)Gd0
(19)

where

V31 = −V2G
d
0V1, (20)

V32 = −V1G
d
0V2, (21)

V33 = −V1G
d
0V1G

d
0V1. (22)

Gd0V33G
d
0, the first term in (19), is defined as a reflection-like inverse scattering if it changes prop-

agation direction with respect to the measurement point after being altered by V1. Note that for
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reflection-like scattering the geometric relationship between scatterers must be lower-higher-lower.
The remaining two terms in (19) are refraction-like scattering associated with primaries but not
internal multiples since they do not satisfy the lower-higher-lower relationship between scatterers
(Weglein et al., 2003).

Following the method developed by Weglein et al. (1997) and Araújo (1994), the equation for first
order internal multiples in 2-D acoustic data is

b3IM (kg, ks, qg + qs) =
1

(2π)2

∫ ∞

−∞
dk1e

−iq1(zg−zs)

∫ ∞

−∞
dz′1b1(kg, k1, z

′
1)e

i(qg+q1)z′1

·
∫ ∞

−∞
dk2e

iq2(zg−zs)

∫ z′1−ε

−∞
dz′2b1(k1, k2, z

′
2)e

−i(q1+q2)z′2

·
∫ ∞

z′2+ε
dz′3b1(k2, ks, z

′
3)e

i(q2+qs)z′3

(23)

where b1(z) represents the recorded seismic data in pseudo depth. The parameter ε > 0 ensures
z′1 > z′2 and z′3 > z′2 which satisfy the geometric relationship between reflections of internal multiples
(lower-higher-lower). b1 is defined in terms of the original prestack data without free surface
multiples. The data can be written as

D(kg, ks, ω) = (−2iqs)−1b1(kg, ks, qg + qs). (24)

The adaption elastic version of (23) given by Matson (1997) is

B3IM
ij (k1, k2, θ1i + θ2j) =

1
(2π)2

∫ ∞

−∞
dk3e

−iθ3l(zg−zs)

∫ ∞

−∞
Bil(k1, k3, z1)ei(θ1i+θ3l)z1dz1

·
∫ ∞

−∞
dk4e

iθ4m(zg−zs)

∫ z1−ε

−∞
Blm(k3, k4, z2)e−i(θ3l+θ4m)z2dz2

·
∫ ∞

z2+ε
Bmj(k4, k2, z3)ei(θ4m+θ2j)z3dz3

(25)

where θ1i indicates P and S vertical wavenumber for i = P and S, respectively.

Similarly, Bij is defined in terms of the original pre-stack data, that is

Dij(k1, k2, ω) = (−2iθ2j)−1Bij(kg, ks, θ1i + θ2j). (26)

Hence,

DPP (k1, k2, ω) = (−2iθ2P )−1BPP (kg, ks, θ1P + θ2P ), (27)
DPS(k1, k2, ω) = (−2iθ2S)−1BPS(kg, ks, θ1P + θ2S), (28)
DSP (k1, k2, ω) = (−2iθ2P )−1BSP (kg, ks, θ1S + θ2P ), (29)
DSS(k1, k2, ω) = (−2iθ2S)−1BSS(kg, ks, θ1S + θ2S). (30)

One can see that if the converted waves do not exist, equation (25) becomes equation (23), which
is the first order internal multiple attenuator in acoustic form.
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Evaluating the expression of B3IM
PP , we have

B3IM
PP (k1, k2, θ1P + θ2P ) =

1
(2π)2

∫ ∞

−∞
dk3e

−iθ3P (zg−zs)

∫ ∞

−∞
BPP (k1, k3, z1)ei(θ1P +θ3P )z1dz1

·
∫ ∞

−∞
dk4e

iθ4P (zg−zs)

∫ z1−ε

−∞
BPP (k3, k4, z2)e−i(θ3P +θ4P )z2dz2

·
∫ ∞

z2+ε
BPP (k4, k2, z3)ei(θ4P +θ2P )z3dz3

+
1

(2π)2

∫ ∞

−∞
dk3e

−iθ3P (zg−zs)

∫ ∞

−∞
BPP (k1, k3, z1)ei(θ1P +θ3P )z1dz1

·
∫ ∞

−∞
dk4e

iθ4S(zg−zs)

∫ z1−ε

−∞
BPS(k3, k4, z2)e−i(θ3P +θ4S)z2dz2

·
∫ ∞

z2+ε
BSP (k4, k2, z3)ei(θ4S+θ2P )z3dz3

+
1

(2π)2

∫ ∞

−∞
dk3e

−iθ3S(zg−zs)

∫ ∞

−∞
BPS(k1, k3, z1)ei(θ1P +θ3S)z1dz1

·
∫ ∞

−∞
dk4e

iθ4S(zg−zs)

∫ z1−ε

−∞
BSS(k3, k4, z2)e−i(θ3S+θ4S)z2dz2

·
∫ ∞

z2+ε
BSP (k4, k2, z3)ei(θ4S+θ2P )z3dz3

+
1

(2π)2

∫ ∞

−∞
dk3e

−iθ3S(zg−zs)

∫ ∞

−∞
BPS(k1, k3, z1)ei(θ1P +θ3S)z1dz1

·
∫ ∞

−∞
dk4e

iθ4P (zg−zs)

∫ z1−ε

−∞
BSP (k3, k4, z2)e−i(θ3S+θ4P )z2dz2

·
∫ ∞

z2+ε
BPP (k4, k2, z3)ei(θ4P +θ2P )z3dz3.

(31)

Equation (31) shows that the four-component data, ie. BPP , BPS , BSP , and BSS , are coupled
in the calculation of B3IM

PP . If the converted waves do not exist, equation (31) will simplify to
the acoustic form. However, for land data, the converted waves are not negligible. In order to
better perform the internal multiple attenuation algorithm, four components of data are needed.
Another requirement is the known reference elastic properties. As mentioned perviously, velocity
errors will produce artifacts in the (P, S) data which will affect the internal multiple estimation
(Matson, 1997). Besides the (P, S) decomposition issue, the algorithm’s sensitivity to the reference
properties will cause errors when predicting the total traveltimes of internal multiples. We will use
two analytic examples to demonstrate this issue in the following section.

A 1-D analytic example of internal multiple attenuation

In this section, we use an analytic example given by Weglein and Matson (1998) and Weglein et al.
(2003) to show the working of inverse scattering internal multiple attenuation algorithm and its
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sensitivity to reference velocity. We considered a one dimensional normal incidence case. The first
term of the internal multiple sub-series given by Araújo (1994) and Weglein et al. (1997) is

b3IM (kz) =
∫ ∞

−∞
dz′1b1(z

′
1)e

ikzz′1

∫ z′1−ε

−∞
dz′2b1(z

′
2)e

−ikzz′2

∫ ∞

z′2+ε
dz′3b1(z

′
3)e

ikzz′3 (32)

The model consists of two reflectors located at depths Z1 and Z2 with the corresponding reflection
coefficients R1 and R2. The reflected data due to the normal incident plane wave source is

b1(t) = R1δ(t− t1) +R2T1T
′
1δ(t− t2) + internal multiples. (33)

where t1 and t2 are the arrival times of the first and second primaries; and T1 and T ′1 are the
transmission coefficients corresponding to the first reflector for incoming and outgoing waves, re-
spectively.

To simplify the calculation, we use only primaries as the input data. Fourier transforming (33) into
the frequency domain gives

b1(ω) = R1e
iωt1 +R2T1T

′
1e
iωt2

= R1e
i(2ω/c0)(c0t1/2) +R2T1T

′
1e
i(2ω/c0)(c0t2/2)

= R1e
ikzz1 +R2T1T

′
1e
ikzz2

(34)

where c0 is the reference velocity (the water speed for the marine case). The vertical wavenumber
is defined as kz = 2ω/c0 and the pseudo depths of the first and second reflectors are defined as
z1 = c0t1/2 and z2 = c0t2/2, respectively.

In order to input data into (32), we Fourier transform (34) into pseudo depth

b1(z) = R1δ(z − z1) +R2T1T
′
1δ(z − z2). (35)

The actual first order internal multiple of this model is

IMactual(t) = −R1R
2
2T1T

′
1δ(t− (2t2 − t1)). (36)

Fourier transforming equation (36) into frequency domain gives

IMactual(ω) = −R1R
2
2T1T

′
1e
iω(2t2−t1)), (37)

and the predicted first order internal multiple shown by Weglein and Matson (1998) is

IMest(ω) = R1R
2
2T

2
1 T

′
1
2
eiω(2t2−t1)). (38)

Comparing this result to the actual internal multiple (36), one can see that the internal multiple
algorithm correctly predicts the total travel time and properly estimates the amplitude. The
amplitude of the estimation has a T1T

′
1 factor which is less than but close to 1.
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Suppose we choose the wrong reference velocity c′0. The new vertical wave number becomes k′z =
2ω/c′0, and the new pseudo depths are za = c′0t1/2 and zb = c′0t2/2.

Equation (35) can be rewritten as

b1(z) = R1δ(z − za) +R2T1T
′
1δ(z − zb). (39)

Substituting (44) into the third integral of (32), we have∫ ∞

z′2+ε
dz′3e

ik′zz
′
3 [R1δ(z′3 − za) +R2T1T

′
1δ(z

′
3 − zb)]

= R1e
ik′zzaH(za − (z′2 + ε)) +R2T1T

′
1e
ik′zzbH(zb − (z′2 + ε)),

(40)

where H is the Heaviside function. The second integral becomes∫ z′1−ε

−∞
dz′2e

−ik′zz′2 [R1δ(z′2 − za) +R2T1T
′
1δ(z

′
2 − zb)]

· [R1e
ik′zzaH(za − (z′2 + ε)) +R2T1T

′
1e
ik′zzbH(zb − (z′2 + ε))]

= R2
1e
ik′z(za−za)H(za − (za + ε))H((z′1 − ε)− za)

+R1R2T1T
′
1e
ik′z(za−zb)H(za − (zb + ε))H(z′1 − ε− zb)

+R1R2T1T
′
1e
ik′z(zb−za)H(zb − (za + ε))H(z′1 − ε− za)

+R2
2T

2
1 T

′
1
2
eik

′
z(zb−zb)H(zb − (zb + ε))H(z′1 − ε− zb).

(41)

The underlined Heaviside function in (41) are zero due to H(< 0) = 0. The remaining third term
is

R1R2T1T
′
1e
ik′z(zb−za)H(zb − (za + ε))H(z′1 − ε− za). (42)

Therefore,

b3IM (k′z) =
∫ ∞

−∞
dz′1e

ik′zz
′
1 [R1δ(z′1 − za) +R2T1T

′
1δ(z

′
1 − zb)]

· [R1R2T1T
′
1e
ik′z(zb−za)H(zb − (za + ε))H(z′1 − ε− za)]

= R2
1R2T1T

′
1e
ik′z(zb−za+za)H(zb − (za + ε))H(za − ε− za)

+R1R
2
2T

2
1 T

′
1
2
eik

′
z(zb−za+zb)H(zb − (za + ε))H(zb − ε− za)

= R1R
2
2T

2
1 T

′
1
2
eik

′
z(2zb−za)

= R1R
2
2T

2
1 T

′
1
2
ei(2ω/c

′
0)(2c′0t2/2−c′0t1/2)

= R1R
2
2T

2
1 T

′
1
2
eiω(2t2−t1)).

(43)

Note that the underlined term H(−ε) = 0, and H(> 0) = 1.
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The result of (43) agrees with the estimation that uses true reference velocity (see equation (38).
One can see that the internal multiple estimation is independent of reference velocity. The different
reference velocities will change the pseudo depths and the corresponding vertical wavenumbers but
the total time of the predicted multiple remain accurate. In other words, even if we use a wrong
reference velocity to perform this algorithm, the internal multiples will be properly predicted.
However, the independence from the reference velocity is only true for the 1-D normal incidence
case. In the next section, we will show that using inaccurate reference velocity to process the
internal multiple algorithm may cause errors in the non-normal incidence case.

A 1.5D analytic example of internal multiple attenuation

We consider a 2-D layering model given by Nita and Weglein (2005) (see Figure 1). The velocity
changes across the interfaces located at z = za and z = zb where the velocities are c0, c1, and c2,
respectively. The sources and receivers are located at the measurement surface where the depth
z = 0.

Figure 1: The model for the 1.5D example

The data in the frequency ω domain can be written as

D(xh, 0;ω) =
1
2π

∫ ∞

−∞
dkh

R1 + T1R2T
′
1e
iν1(zb−za) + · · ·
iqs

eikzzaeikhxh . (44)

where kz = qg + qs, kh = kg − ks, xh = (xg − xs)/2, and ν1 = q1g + q1s.

For the first primary (see Figure 2), we have

qs =
ω

c0
cosθ. (45)
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Figure 2: The geometry of the first primary in the data

The reference vertical speed is defined as

cv =
c0
cosθ

, (46)

the reference horizontal speed is defined as

ch =
c0
sinθ

. (47)

and the horizontal travel time is
th =

xg − xs
ch

=
2xh
ch

, (48)

The pseudo depths of the first and second reflectors become

z1 = cvtv1/2, (49)
z2 = cvtv2/2. (50)

where tv1 and tv2 are the vertical travel times for the first and second primaries, respectively.

Therefore, the total travel times for the first and second primaries are T1 = tv1+th and T2 = tv2+th,
respectively.

The reflected data due to the incident plane wave source is

b1(t) = R1δ(t− T1) +R2T1T
′
1δ(t− T2). (51)
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Fourier transforming into the frequency ω domain gives

b1(ω) = R1e
iωT1 +R2T1T

′
1e
iωT2

= R1e
iω(tv1+th) +R2T1T

′
1e
iω(tv2+th)

= [R1e
i( 2ω

cv
)(

cvtv1
2

) +R2T1T
′
1e
i( 2ω

cv
)(

cvtv2
2

)]ei(
2ω
ch

)(
chth

2
)
.

(52)

Equation (52) can be rewritten as

b1(kh, kz) = [R1e
ikzz1 +R2T1T

′
1e
ikzz2 ]eikhxh . (53)

Fourier transforming b1 over xh, we find

b1(kh, kz) = [R1e
ikzz1 +R2T1T

′
1e
ikzz2 ]δ(kg − ks). (54)

Inverse Fourier transforming equation (53) over kz gives

b1(kh, z) = [R1δ(z − z1) +R2T1T
′
1δ(z − z2)]δ(kg − ks) (55)

Substituting equation (55) into the third integral of equation (23), we have∫ ∞

z′2+ε
dz′3e

ikzz′3 [R1δ(z′3 − z1) +R2T1T
′
1δ(z

′
3 − z2)]δ(k2 − ks)

= [R1e
ikzz1H(z1 − (z′2 + ε)) +R2T1T

′
1e
ikzz2H(z2 − (z′2 + ε))]δ(k2 − ks).

(56)

The second integral is∫ z′1−ε

−∞
dz′2e

−ikzz′2 [R1δ(z′2 − z1) +R2T1T
′
1δ(z

′
2 − z2)]δ(k1 − k2)

·[R1e
ikzz1H(z1 − (z′2 + ε)) +R2T1T

′
1e
ikzz2H(z2 − (z′2 + ε))]δ(k2 − ks)

= R2
1e
ikz(z1−z1)H(z1 − (z1 + ε))H((z′1 − ε)− z1)δ(k1 − k2)δ(k2 − ks)

+R1R2T1T
′
1e
ikz(z1−z2)H(z1 − (z2 + ε))H((z′1 − ε)− z2)δ(k1 − k2)δ(k2 − ks)

+R1R2T1T
′
1e
ikz(z2−z1)H(z2 − (z1 + ε))H((z′1 − ε)− z1)δ(k1 − k2)δ(k2 − ks)

+R2
2T

2
1 T

′
1
2
eikz(z2−z2)H(z2 − (z2 + ε))H((z′1 − ε)− z2)δ(k1 − k2)δ(k2 − ks).

(57)

The underline Heaviside functions are zero. The remaining third term is

[R1R2T1T
′
1e
ikz(z2−z1)H(z2 − (z1 + ε))H((z′1 − ε)− z1)]δ(k1 − k2)δ(k2 − ks). (58)

Therefore,

b3(kh, kz) =
∫ ∞

−∞
dz′1e

−ikzz′1 [R1δ(z′1 − z1) +R2T1T
′
1δ(z

′
1 − z2)]δ(kg − k1)

·[R1R2T1T
′
1e
ikz(z2−z1)H(z2 − (z1 + ε))H((z′1 − ε)− z1)]δ(k1 − k2)δ(k2 − ks)

= R2
1R2T1T

′
1e
ikz(z2−z1+z1)H(z2 − (z1 + ε))H((z1 − ε)− z1)δ(kg − k1)δ(k1 − k2)δ(k2 − ks)

+R1R
2
2T

2
1 T

′
1
2
eikz(z2−z1+z2)H(z2 − (z1 + ε))H(z2 − ε− z1)δ(kg − k1)δ(k1 − k2)δ(k2 − ks)

= R1R
2
2T

2
1 T

′
1
2
eikz(2z2−z1)δ(kg − k1)δ(k1 − k2)δ(k2 − ks)

(59)

87



On-shore research project I - internal multiple attenuation algorithm MOSRP07

where the underline term is zero.

The result for the b3 is

b3(kh, kz) =
∫ ∞

−∞
dk1

∫ ∞

−∞
dk2R1R

2
2T

2
1 T

′
1
2
eikz(2z2−z1)δ(kg − k1)δ(k1 − k2)δ(k2 − ks)

= R1R
2
2T

2
1 T

′
1
2
eikz(2z2−z1)δ(kg − ks)

= R1R
2
2T

2
1 T

′
1
2
ei2(ω/cv)(2cvtv2/2−cvtv1/2)ei(2ω/ch)(chth/2)

= R1R
2
2T

2
1 T

′
1
2
eiω(2tv2−tv1)eiωth

(60)

One can see that the result of equation (59) agrees with the expression of the actual internal
multiple,

IMactual = R1R
2
2T1T

′
1e
iω(2tv2−tv1)eiωth , (61)

except for the extra factor of T1T
′
1, which is always less than but close to 1.

If we pick a wrong reference velocity, c′0, to perform the internal multiple algorithm, the new vertical
and horizontal velocities become c′v = c′0

cosθ and c′h = c′0
sinθ , respectively. The new pseudo depths are

z′1 = c′vtv1/2, (62)
z′2 = c′vtv2/2. (63)

where tv1 and tv2 are the vertical travel times for first and second primaries, respectively.

The horizontal travel time becomes

t′h =
xg − xs
c′h

=
2xh
c′h

. (64)

Subsituting equations (62), (63) and (64) into equation (59), we have

IMest = R1R
2
2T

2
1 T

′
1
2
eiω(2tv2−tv1)eiωt

′
h . (65)

Comparing equation (65) to (61), one can see that the pseudo depths varies when we choose a
wrong reference velocity, but the vertical traveltimes tv1 and tv2 remain unchanged. However, the
horizontal traveltime changes if we use a wrong reference velocity since the horizontal distance
between source and receiver is fixed. In other words, the error due to the wrong velocity occurs
in the horizontal direction so the total traveltime (T = (2tv2 − tv1) + t′h) may not be precisely
predicted.

From the 1.5D analytic example, we find the inverse scattering series internal multiple algorithm is
sensitive to the reference velocity. In the marine case, the reference velocity, namely water speed,
is well-known so we have no problem predicting the correct timing of internal multiples. However,
in elastic internal multiple attenuation, the sensitivity to reference velocity becomes an important
issue. In order to properly perform the attenuation algorithm, an accurate reference velocity is
necessary.
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Conclusion and Future Plan

This study showed that the inverse scattering series is a direct and effective method to predict inter-
nal multiples without any information below the measurement surface. However, four-component
data are needed to perform this algorithm effectively. Another requirement, the known reference
velocities, has effects on (P, S) decomposition and predicting the total traveltimes of internal mul-
tiples. We followed the analysis of Weglein and Matson (1998) and Nita and Weglein (2005) to
further investigate reference velocity sensitivity issue. The result revealed that velocity errors may
have an effect on predicting the correct timing of the interanl multiples for the 1D normal incidence
case. Therefore, this study will focus on the issue of reference velocity so that we can optimize the
performance of internal multiple attenuation for land data.
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Inverse scattering series with lateral variations in 3D

F. Liu and A. B. Weglein

Abstract

This articles represents one part of the integrated efforts in M-OSRP for velocity independent
seismic imaging algorithms, it focuses on the 3D nature of wave propagation in the field acquisi-
tion. In this stage, we assume sifficient data coverage to allow a full wave-theoretical treatment.
Simultaneously, Wang and Weglein (2007) developed asymptotic method to deal with sparse
sampling in the cross-line direction. In the progresive development of the inverse scattering
series, this article represents the first two terms of the inverse scattering series (Weglein et al.,
2003) with lateral variations, and is an exnension of the 2D seismic imaging algorithm detailed in
Liu (2006) into 3D. It brings the velocity independent imaging algorithm one step closer to the
field-data test. A compact vector notation is identified to make our 3D formalism very similar
to its 2D predecessor, simplifying the 3D upgrade of the our existing 2D computer programs.
New structures of the algorithms specific to 3D, for example, vectorized partial derivatives over
lateral coordinates and their interaction in the inverse scattering series, are also identified and
documented.

1 Introduction

This article studies the inverse scattering series (ISS) as it pertains to imaging in a laterally- and
vertically-varying acoustic medium in 3D.

The notations and derivation strategies are specifically tailored so that the extended formalism
resembles the procedure of Liu (2006) as much as possible. After expressing the horizontal coor-
dinates in a single vector notation, our method in 3D shows remarkable resemblance with its 2D
counterpart in Liu (2006), especially the 1D generalizable term in equation 33, which is essentially
the same as Shaw (2005). Compared with many current seismic imaging methods, the extension
from 2D to 3D is very straightforward in the inverse scattering series: good news for for upgrading
our existing 2D code to 3D. One of 3D-specific structure of the algorithms is that, if we define the
partial derivatives over the laterial coordinates as vectors, the simple product in the 2D algorithm
simply become dot products between vectors in our 3D algorithm, for example equation 34.

In this article, portions of the first and second order terms in the ISS are derived. Each term is
separated into “1D generalized” terms vs. terms “without 1D analogy”. The “1D generalized”
portion (equation (33)) of these terms is demonstrated to sum to closed form (equation (39)).

Sections 3–4 contain sequential presentations of the derived forms (full and/or partial) for the 1st–
2nd order terms, of a wavespeed perturbation that is permitted variation in both lateral and vertical
coordinates. Section 5 describes the organization and summation of subsets of the previously
derived terms.

Although presented concisely in this chapter, these derivations contain relatively involved mathe-
matics; much of the detail is included (along with several useful notations and conventions) in an
extensive set of appendices. Please refer to relevant appendices for technical detail.
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X Y

Z

Measurement Surface

Figure 1: Seismic exploration problem in 3D. The horizontal coordinates are denoted as ~x and y, respec-
tively. The vertical coordinate is denoted as z. In this example, the measurement surface is
chosen as zg = zs = 0, which means both sources and receivers are located at z = 0, very typical
for reflection seismology.

2 Seismic imaging problems in 3D

Let us consider a simplified seismic experiment in 3D where the elevation of the sources zs and
receivers zg is fixed (see Fig. 1). In this case, the seismic data should be considered as a function of
three variables: the horizontal coordinates of the sources ~xs = (xs, ys), the horizontal coordinates
of the receivers ~xg = (xg, yg), and time t: totally five degree of freedom.

In many formalisms for seismic imaging, a certain model (often much simplified) is assumed for
the derivation of the algorithm. For example, in the most popular constant-density acoustic model,
only the velocity is assumed to be varying. If velocity is the only objective function, the Earth has
only three degrees of freedom: the horizontal coordinates ~x = (x, y) and the vertical coordinate z.
There are two more degrees of freedom in the data than the objective function. The extra freedom
must be reduced to reach an answer. In this article, a constant vector of angles ~θ = (θx, θy) is chosen
to make a consistent reduction; for the detail of the angle-vector ~θ, see equation (27). Physically,
~θ represents the incidence angle of synthesized plane-wave.

For a constant-density acoustic model, the mathematical description of the wave-propagation prob-
lem is,

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+

ω2

c2(x, y, z)

)
P (x, y, z, xs, ys, zs, ω) = δ(x− xs)δ(y − ys)δ(z − zs)A(ω), (1)

where ω is the temporary frequency (the Fourier conjugate of time t), P (x, y, z, xs, ys, zs, ω) is the
wave-field, A(ω) is the source signature (or wavelet), the function c(x, y, z) is the velocity field
governing the wave propagation in the subsurface. If the wavelet is known and its effect had been
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compensated for, we can use A(ω) = 1, and the corresponding wave-field is called the Green’s
function (or impulse response) in the medium c(x, y, z),

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+

ω2

c2(x, y, z)

)
G(x, y, z, xs, ys, zs, ω) = δ(x− xs)δ(y − ys)δ(z − zs). (2)

The inverse scattering series (ISS) is a procedure to construct the medium property c(x, y, z) using
a reference velocity c0 1 and its corresponding Green’s function G0,

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+
ω2

c20

)
G0(x, y, z, xs, ys, zs, ω) = δ(x− xs)δ(y − ys)δ(z − zs). (3)

The major reason to choose the constant reference velocity is the availability of the analytic solution
for its Green’s function and exact analytic inverse for the corresponding integral equation.

For constant velocity c0, the reference Green’s functionG0 can be obtained by applying the following
Fourier transforms on both sides of equation (3),

∞∫
−∞

dx

∞∫
−∞

dye−i(kxx+kyy). (4)

We have,

(
∂2

∂z2
+ q2

)
G̃0(kx, ky, z, xs, ys, zs, ω) = δ(z − zs)e−i(kxxs+kyys), (5)

where,

q2 =
ω2

c20
− k2

x − k2
y

q = sgn(ω)

√
ω2

c20
− k2

x − k2
y

and,

G̃0(kx, ky, z, xs, ys, zs, ω) =

∞∫
−∞

dx

∞∫
−∞

dye−i(kxx+kyy)G0(x, y, z, xs, ys, zs, ω). (6)

1in this article, the reference velocity is chosen as a constant
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Throughout this article, the function sgn is defined as the sign of its argument:

sgn(x) =


1 (x > 0)
0 (x = 0)
−1 (x < 0)

(7)

Equation (5) is a wave-equation in 1D, its casual solution can be obtained by multiplying the
solution of 1D Green’s function with an extra factor e−i(kxxs+kyys):

G̃0(kx, ky, z, xs, ys, zs, ω) = e−i(kxxs+kyys) e
iq|z−zs|

2iq
. (8)

The Fourier transform in equation (4) has a corresponding inverse Fourier transform,

1
4π2

∞∫
−∞

dkx

∞∫
−∞

dkye
i(kxx+kyy). (9)

Using the inverse Fourier transform in equation (9), we transform the solution in equation (8) to
the solution of equation (3),

G̃0(x, y, z, xs, ys, zs, ω) =
1

4π2

∞∫
−∞

dx

∞∫
−∞

dyei(kx[x−xs]+ky [y−ys]) e
iq|z−zz |

2iq
. (10)

If we use the vector notation: ~k = (kx, ky), k2 = |~k|2 = k2
x + k2

y, ~x = (x, y), ~xs = (xs, ys), and

define: ~
∫
d~x as ~

∫
d~x =

∞∫
−∞

∞∫
−∞

dxdy, equation (10) can be further simplified,

G0(~x, z, ~xs, zs, ω) =
1

4π2

∞∫
−∞

dx

∞∫
−∞

dyei
~k•(~x−~xs) e

iq|z−zz |

2iq
=

1
4π2

~∫
d~xei

~k•(~x−~xs) e
iq|z−zz |

2iq
. (11)

Using a constant reference velocity will result in larger perturbation since the Earth should be much
better approximated by a reference velocity that varies with depth. Although a larger perturbation
decelerates the convergence rate of the ISS (Shaw et al., 2003), this problem is solved by the
availability of fast closed-form solutions (for example, equation (39)) which collapse an infinite
number of terms.

The input data D (available only on the measurement surface where zg = zs = 0) for the inverse
scattering series is the difference between the Green’s function in the actual and reference medium:

D(xg, yg, zg, xs, ys, zs, ω) = G(xg, yg, zg, xs, ys, zs, ω)−G0(xg, yg, zg, xs, ys, zs, ω) (12)
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We can denote two horizontal variables: (x, y) with a single vector ~x: ~x = (x, y), and similarly
~xg = (xg, yg), ~xg = (xs, ys), ~x′ = (x′, y′), ~x′′ = (x′′, y′′), ~x′′′ = (x′′′, y′′′).

The data in the inverse scattering series can also be considered as the recorded wave-field G with
the direct arrival G0 being removed.

With the data defined in equation (12), the first 3 terms of the inverse series can be iteratively
computed in an order-by-order fashion via (Weglein et al., 2003, equation (11 )∼(13 )) 2,

D(~xg, zg, ~xs, zs, ω) =
∫ ∞

−∞
dz′

~∫
d~x′G0(~xg, zg, ~x′, z′, ω)V1(~x′, z′)G0(~x′, z′, ~xs, zs, ω), (13)

at first order,

0 =
∫ ∞

−∞
dz′

~∫
d~x′G0(~xg, zg, ~x′, z′, ω)V2(~x′, z′)G0(~x′, z′, ~xs, zs, ω)

+
∫ ∞

−∞
dz′

~∫
d~x′G0(~xg, zg, ~x′, z′, ω)V1(~x′, z′)∫ ∞

−∞
dz′′

~∫
d~x′′G0(~x′, z′, ~x′′, z′′, ω)V1(~x′′, z′′)G0(~x′′, z′′, ~xs, zs, ω),

(14)

at the second order,

0 =
∫ ∞

−∞
dz′

~∫
d~x′G0(~xg, zg, ~x′, z′, ω)V3(~x′, z′)G0(~x′, z′, ~xs, zs, ω)

+
∫ ∞

−∞
dz′

~∫
d~x′G0(~xg, zg, ~x′, z′, ω)V1(~x′, z′)∫ ∞

−∞
dz′′

~∫
d~x′′G0(~x′, z′, ~x′′, z′′, ω)V2(~x′′, z′′)G0(~x′′, z′′, ~xs, zs, ω)

+
∫ ∞

−∞
dz′

~∫
d~x′G0(~xg, zg, ~x′, z′, ω)V2(~x′, z′)∫ ∞

−∞
dz′′

~∫
d~x′′G0(~x′, z′, ~x′′, z′′, ω)V1(~x′′, z′′)G0(~x′′, z′′, ~xs, zs, ω)

+
∫ ∞

−∞
dz′

~∫
d~x′G0(~xg, zg, ~x′, z′, ω)V1(~x′, z′)∫ ∞

−∞
dz′′

~∫
d~x′′G0(~x′, z′, ~x′′, z′′, ω)V1(~x′′, z′′)∫ ∞

−∞
dz′′′

~∫
d~x′′′G0(~x′′, z′′, ~x′′′, z′′′, ω)V1(~x′′′, z′′′)G0(~x′′′, z′′′, ~xs, zs, ω),

(15)

2Each equation is explicitly written in the integral form rather than the operator form in the reference.

95



Inverse scattering series with lateral variations in 3D MOSRP07

at third order, etc., in which

Vn(~x, z) =
ω2

c20
αn(~x, z), (16)

and αn(~x, z) is the n-th order component of the wavespeed perturbation α(~x, z) =
∞∑
n=1

αn(~x, z),

whose reconstruction is the aim of the inverse scattering series.

This definition of perturbation V is valid for the constant-density acoustic wave equation. In this
case, the perturbation is defined as V = ω2α/c20 where α(~x, z) = 1 − c20/c

2(~x, z). For more details
about how the perturbation is defined in the inverse scattering series, interested readers may refer
to (Weglein et al., 2003, page-R32).

3 Inversion result of the first term

Changing ~x to ~xg, and ~k to ~kg, the Green’s function in equation (11) can also be written as,

G0(~xg, zg, ~xs, zs, ω) =
1

4π2

~∫
d~kg

ei
~kg•(~xg−~xs)eiqg |zg−zs|

2iqg
, (17)

where ~kg is the Fourier conjugate to ~xg, qg = sgn(ω)
√

(ω/c0)
2 − k2

g , k
2
g = |~kg|2. (~xg, zg) and (~xs, zs)

denote the spatial coordinates of the receivers and sources, respectively.

With the Green’s function defined in equation (17), equation (13) can be elegantly solved by apply-
ing two nested Fourier transforms 3: ~

∫
d~xg

~∫ d~xsei~ks•~xs−i~kg•~xg , over the lateral source and receiver
coordinates to obtain α1. After the Fourier transform above, the left-hand side of equation (13)

become the triple Fourier of the data:
˜̃̃
D
(
~kg,~ks, ω

)
, the nested integral on the right-hand-side of

equation (13) is reduced to a simple product:

~∫
d~x′

∞∫
−∞

dz′
~∫
d~xgG0(~xg, zg, ~x′, z′, ω)e−i~kg•~xg

~∫
d~xsG0(~x′, z′, ~xs, zs, ω)ei~ks•~xs

ω2

c20
α1(~x′, z′)

=
~∫
d~x′

∞∫
−∞

dz′
ω2

c20
α1(~x′, z′)

~∫
d~xgG0(~xg, zg, ~x′, z′, ω)e−i~kg•~xg

~∫
d~xsG0(~xs, zs, ~x′, z′, ω)ei~ks•~xs

(18)

The last step in the derivation above using the reciprocity: for acoustic medium the Green’s function
is the same if you exchange the source and receiver locations. Please notice that the two innermost

3Note that the “sign convention” of the Fourier transform is different for the source and geophone coordinates.
See Clayton and Stolt (1981) for detail of this choice of Fourier transform.
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integral in the equation above, namely the ~
∫
d~xg and ~

∫
d~xs integral, is actually in the same form as

equation (6). Since equation (6) can be written in vector form as

G̃0(~k, z, ~x, zs, ω) =
~∫
d~xe−i

~k•~xG0(~x, z, ~xs, zs, ω). (19)

its ansnwer, given in equation (8), can be written in vector form as,

G̃0(~k, z, ~xs, zs, ω) = e−i
~k•~xs

eiq|z−zs|

2iq
. (20)

And consequently, equation (18) can be written as,

~∫
d~x′

∞∫
−∞

dz′
ω2

c20
α1(~x′, z′)e−i

~kg•~x′ e
iqg |zg−z′|

2iqg
ei
~ks•~x′ e

iqs|zs−z′|

2iqs

=
~∫
d~x′

∞∫
−∞

dz′
ω2

c20
α1(~x′, z′)e−i

~kg•~x′ e
iqg(z′−zg)

2iqg
ei
~ks•~x′ e

iqs(z′−zs)

2iqs

=
~∫
d~x′

∞∫
−∞

dz′
ω2

c20
α1(~x′, z′)e−i(

~kg−~ks)•~x′ e
i(qg+qs)z′

−4qgqs

=− ω/c0
4qgqs

~∫
d~x′e−i(

~kg−~ks)•~x′
∞∫

−∞

dz′ei(qg+qs)z′α1(~x′, z′) = − ω/c0
4qgqs

˜̃α1(~kg − ~ks, qg + qs)

(21)

So we have:

˜̃̃
D
(
~kg,~ks, ω

)
= − ω2

4qgqsc20
˜̃α1(~kg − ~ks, qg + qs), (22)

where ˜̃α1 is the double Fourier transform of α1(~x , z):

˜̃α1(~km, kz) =
~∫
d~xe−i

~km•~x
∞∫

−∞

dzeikzzα1(~x, z),

and qg = sgn(ω)
√

(ω/c0)2 − k2
g , qs = sgn(ω)

√
(ω/c0)2 − k2

s , k
2
g = |~kg|2, k2

s = |~ks|2.
˜̃̃
D is the triple

Fourier transform of the data D(~xg, ~xs, t):
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˜̃̃
D
(
~kg,~ks, ω

)
=
~∫
d~xge

i~kg•~xg
~∫
d~xse

−i~ks•~xs

∞∫
−∞

dteiωtD(~xg, xs, t).

Equation (22) can be rearranged as:

˜̃α1(~kg − ~ks, qg + qs) = −4
qgqs
ω2/c20

˜̃̃
D
(
~kg,~ks, ω

)
, (23)

For convenience, let me summarize all the variables and their corresponding Fourier conjugates in
the table below:

Physical meaning Variable name Fourier conjugate
Horizontal coordinate of the receiver ~xg ~kg
Horizontal coordinate of the source ~xs ~ks
Time t ω

Horizontal coordinate of the mid-point ~xm = 0.5(~xg + ~xs) ~km = ~kg − ~ks = (kmx, kmy)
Offset ~xh = ~xg − ~xs ~kh = ~kg + ~ks = (khx, khy)

By a simple transformation of coordinates, the data can be transformed to the mid-point ~xm and
offset ~xh coordinate,

~xm =
~xg + ~xs

2
~xh = ~xg − ~xs. (24)

Equation (23) can be written in an equivalent form,

˜̃α1(~km, kz) = −4
qgqs
ω2/c20

˜̃̃
D
(
~km,~kh, kz

)
. (25)

In equation (25), ˜̃α1(~km, kz) (in the left-side of equation) has three degree of freedom, but
˜̃̃
D
(
~km,~kh, kz

)
(in the right-side of equation) has five degree of freedom. The five-degree of freedom in the right-
hand side has to be reduced to three-degree of freedom in the left-hand side. To consistently make
such a reduction, we define a vector of two fixed angles ~θ = (θx, θy), and denote sin ~θ as:

sin ~θ = (sin θx, sin θy) (26)

With the definition above, we require,

~kh = ~kg + ~ks = 2 ωc0 sin ~θ ~kg − ~ks = ~km . (27)
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One important reason to choose angle ~θ as our parameterization is that parameter inversion is
normally done as a function of angle, very popular in seismic imaging.

For an arbitrary angle ~θ, we will solve equation (23) under the constraint of equation (27). Conse-
quently, for each km and ω, the corresponding vertical wave-number kz can be calculated by:

kz = qg + qs = sgn(ω)

√(
ω

c0

)2

−
(
ω

c0
sin (θx) +

kmx
2

)2

−
(
ω

c0
sin (θy) +

kmy
2

)2

+ sgn(ω)

√(
ω

c0

)2

−
(
ω

c0
sin (θx)−

kmx
2

)2

−
(
ω

c0
sin (θy)−

kmy
2

)2

.

For fixed ~km and ~θ, let us consider the equation above as a function of ω:

kz = κ(ω). (28)

For the same fixed ~km and ~θ, the relation above can be inverted to express ω as a function of kz:

ω = κ−1(kz) =
c0kz
2

√√√√ k2
z + k2

m

k2
z [cos2 θx + cos2 θy]−

[
~km • sin ~θ

]2 , (29)

where k2
m = |~km|2 = k2

mx + k2
my.

With ω being defined in equation (29), our generalized formalism can be expressed as:

˜̃α1

(
~km, kz

)
= − 4qgqs

ω2/c20

˜̃̃
D

(
ω sin ~θ
c0

+
~km
2
,
ω sin ~θ
c0

−
~km
2
, ω

)

=− 4qgqs
ω2/c20

∞∫
−∞

d~xge
−i~kg•~xg

∞∫
−∞

d~xse
i~ks•~xs

∞∫
−∞

dteiωtD (~xg, ~xs, t) .

(30)

Let us change the integration variable from (~xg,~xs) to (~xm = 0.5(~xg + ~xs), ~xh = ~xg − ~xs):
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− 4qgqs
ω2/c20

~∫
d~xm

~∫
d~xhe

−i~kg•[~xm+0.5~xh]ei
~ks•[~xm−0.5~xh]

∞∫
−∞

dteiωtD (~xm + 0.5~xh, ~xm − 0.5~xh, t)

= − 4qgqs
ω2/c20

~∫
d~xme

−i(~kg−~ks)•~xm
~∫
d~xhe

−i(~kg+~ks)•~xh/2

∞∫
−∞

dteiωtD (~xm + 0.5~xh, ~xm − 0.5~xh, t)

= − 4qgqs
ω2/c20

~∫
d~xme

−i~km•~xm
~∫
d~xhe

−iω sin ~θ
c0

•~xh

∞∫
−∞

dteiωtD (~xm + 0.5~xh, ~xm − 0.5~xh, t)

= − 4qgqs
ω2/c20

~∫
d~xme

−i~km•~xm

∞∫
−∞

dt
~∫
d~xhe

iω

»
t− sin(~θ)•~xh

c0

–
D (~xm + 0.5~xh, ~xm − 0.5~xh, t)

With another change of the integration variable from t to (τ = t− sin(~θ)•~xh

c0
), the expression above

can be written as:

− 4qgqs
ω2/c20

~∫
d~xme

−i~km•~xm

∞∫
−∞

eiωτdτ
~∫
d~xhD

(
~xm + 0.5~xh, ~xm − 0.5~xh, τ +

sin(~θ) • ~xh
c0

)

= − 4qgqs
ω2/c20

~∫
d~xme

−i~km•~xm

∞∫
−∞

dτeiωτDτp (~xm, τ)

where Dτp is simply the linear Radon transform of all traces within a CMP gather 4:

Dτp (~xm, τ) =
~∫
d~xhD

(
~xm +

~xh
2
, ~xm −

~xh
2
, τ +

sin(~θ) • ~xh
c0

)
. (31)

The equation above is defined for the expression of α1 :

˜̃α1

(
~km, kz

)
= − 4qgqs

ω2/c20

~∫
d~xme

−i~km•~xm

∞∫
−∞

dτeiωτDτp (~xm, τ) . (32)

4CMP means “common mid-point”. A CMP-gather is the set of seismic data sharing the same mid-point ~xm.
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The advantages of expressing data in this form are: (1) an easier cut of the direct-arrivals, and (2),
very straightforward control over the amplitude and waveform 5. Similar slant-stacking idea can
be found in (Shaw, 2005, equation 3.12 and 3.13 ).

There are also pre-processing procedures that can be more easily and quickly done in the τ − p
domain (the data after slant stacking) than in the original domain; the computation cost can be
greatly reduced since the freedom of the data is reduced.

4 Inversion result of the second term

In the previous section, α1 is derived in a general form where the angle θ can be an arbitrary
constant 6. From now on, the derivation of α2 and later terms is only the special case θ = 0.

In the derivation of α2 (see, for instance, Liu (2006)), there begins to arise some of the complexity
characteristics of this multidimensional Earth problem. Only the result is presented here, interested
readers may refer to Appendix C for a complete analysis (see also Appendix A and B for an
introduction to the derivation and analytical strategy used.). The second-order term α2 is computed
using α1 via equation (14). In the final result, α2 is split into 3 parts: α2 = α2,1 +α2,2 +α2,3. The
first two terms are 1D-generalizable and can be expressed in the (~x , z) domain as

α2,1(~x, z) = −1
2
α2

1(~x, z)−
1
2
∂α1(~x, z)

∂z

z∫
−∞

α1(~x, u)du, (33)

and

α2,2(~x, z) =
1
2
∂α1(~x, z)

∂~x
•

z∫
−∞

du

u∫
−∞

dv
∂α1(~x, v)

∂~x
. (34)

Equation (33) is identical to the α2 equation obtained by Shaw (2005) and Liu (2006), except for
the lateral variable ~x . From a mechanical point of view, we recall from the interpretation of Shaw
that the presence in the inverse scattering series of the weighted n-th partial derivative of α1 with
respect to z was indicative of the n-th term in a series to correct the location of a reflector in depth.
In equation (33), the z-corrective behavior is clearly seen in the multidimensional case also. What
appears in this analysis for the first time is a weighted first partial derivative 7 with respect to ~x,

5The sources in seismic exploration are localized in space, which produce reflection data with varying waveform
for different offsets even for the simplest horizontal reflectors. But after applying the linear Radon transform, which
can be easily implemented, we have a physical problem with plane-wave incidence. For a horizontal reflector, the
reflection responses to an incident plan-wave share the same waveform for different incident angles.

6Of course, in the actual computation, the value of θ should not be so big that post-critical phenomena occurs.
7In this case, since ~x is a vector ~x = (x, y), ∂

∂~x
is defined as the following vector

“
∂

∂x
, ∂

∂y

”
. And in this article “•”

is the dot product of two vectors.
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in equation (34). This term, being a low order derivative with respect to the lateral coordinate of
α1, should be regarded as a low order term in the construction of a laterally corrective function. It
is intriguing to note that the coefficient of this lateral corrector involves integrals over depth z.

Equation 34 can be considered as the derivative with respect to ~x of the first term in the 1D inverse
series α1, multiplied by (in an inner-product sense) one-half of the following newly defined factor:

F (~x, z) =

z∫
−∞

du

u∫
−∞

dv
∂α1(~x, v)

d~x
dv (35)

The last component of α2 is expressed in the (~km, z) domain because its equivalent expression in
the (~xm, z) domain is much more complicated:

α̃2,3(~km, z) =
1

8π2

~∫
d~k1

∞∫
−∞

dz1α̃1

(
0.5~km − ~k1, z1

) z1∫
−∞

dz2α̃1

(
~k1 + 0.5~km, z2

)
ξ̃2

(
~km,~k1,

z1 + z2
2

− z,
z1 − z2

2

)
,

(36)

where ξ̃2 is defined as follows:

ξ̃2

(
~km,~k1, ε0, ε1

)
=

∞∫
−∞

ei(ε0+ε1)kzdkz

(
i
k2
z + k2

m

u1
ei4ψ − ikz +

ε1a1

2

)
a1 = k2

m − 4k2
1 u1 = sgn(kz)

√
k2
z + a1 4ψ = ε1(u1 − kz).

(37)

Please notice that the ξ̃2 in equation 37 is exactly the same as the ξ̃2 expression in equaton (2.28)
in terms of k2

m and k2
1.

Neither α2,2 nor α2,3 have no 1D analogy and both will vanish if the Earth has no lateral variation.

5 Patterns and closed-forms

In this section, the sets of terms that have aggregate meaning in light of our understanding of
the 1D imaging subseries are accumulated. As stated above, there is a complete recurrence of the
depth-sensitive terms found in the 1D/1.5D analysis 8.

Generally our approach has been to explicitly manipulate and compute terms in the inverse scat-
tering series until patterns emerge that permit the prediction of certain subclasses of subsequent

8for reference, see Shaw et al. (2003)
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series terms. At present however, with second and third order components of α computed, there is
sufficient information to identify and move forward with a set of patterns. These patterns and the
closed-forms are itemized below:

A closed form for “1D-generalized” terms

In α2 inversion result appear terms (see equation (33)) that are in essence identical to expressions
obtained under the 1D Earth assumption (The only difference is an extra lateral variable ~x ). As a
result, the leading-order imaging subseries in a 1D Earth (see equation (17) in Shaw et al. (2003))
can be trivially extended for a multi-dimensional Earth by simply adding a lateral variable ~x as:

αLOIS(~x, z) = α1

~x, z − 1
2

z∫
−∞

α1(~x, u)du

 ,

the superscript LOIS in the equation above means “Leading order imaging subseries”.

The first- and higher-order lateral corrector terms (involving lateral derivatives as discussed above),
when collapsed in the correct way may be added to this term.

A closed form for part of the 1st order lateral corrector

Notice that the first term of α2,2 involve a depth integral of the lateral rate of change of α1,
multiplied by the first derivative (with respect to ~x ) of a growing set of terms akin to the 1D
depth imaging series. It seems that the part of a first-order lateral correction will occur given a
summation over these depth terms. Calling that quantity A(~x, z), a term of the form

1
2
∂A(~x, z)
∂~x

•
z∫

−∞

du

v∫
−∞

dv
∂α1(~x, v)

∂~x

is the corresponding closed-form with 1st order lateral correction.

Incorporating non-LOIS imaging components

The leading order imaging subseries is not the entire imaging subseries. There are higher order
terms left out which will be more pronounced for larger contrasts. Let us look at the 1D leading
order imaging subseries (Shaw et al., 2003, equation (17)):

αLOIS(z) =
∞∑
n=0

(−1/2)n

n!
dnα1(z)
dzn

 z∫
−∞

duα1(u)

n

= α1

z − 1
2

z∫
−∞

duα1(u)

 (38)
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The higher-order imaging subseries used in the numerical examples of this article is,

αHOIS

~x, z +
1
2

z∫
−∞

du
α1(~x, u)

1− 1
4α1(~x, u)

 = α1(~x, z). (39)

If the lateral variable ~x is ignored, equation (39) becomes,

αHOIS

z +
1
2

z∫
−∞

du
α1(u)

1− 1
4α1(u)

 = α1(z). (40)

Equation (40) is identical to the simultaneous imaging and inversion subseries proposed in (Innanen,
2005, equation (3)) in terms of moving reflectors spatially. The only difference is the fact that
equation (39) keeps the amplitude of the reflector unchanged.

For a more general choice of data, i.e., for ~θ 6= ~0, which is defined in equation (27), the higher-order
imaging subseries in equation (39) can be generalized as,

αHOIS

~x, z +
1
2

z∫
−∞

du
α1(~x, u)

cos2 θx + cos2 θy − 1
4α1(~x, u)

 = α1(~x, z). (41)

.

6 Conclusions

In the effort to push the seismic imaging subseries one more step closer to the field-data testing, we
presented a seismic imaging formalism in 3D, keeping maximal resemblance with our corresponding
2D algorithm summarized in Liu (2006) to minimize the modification to our existing 2D code for
the future 3D extension. The extension from 2D to 3D is found to be very straightforward in most
situations: simply extend the scalar lateral variable to a vector. This similarity is very encouraging
in M-OSRP’s effort for future field data test.

New structures in our 3D seismic imaging algorithm which is missing in the 2D counterpart are
also identified: for example, in equation (34): the partial derivatives over the laterial variables can
be viewed as a vector, and the product between laterial derivatives in the 2D algorithm can be
extended as a dot product between vectors.

Future test, either of numerical- or field-data, will be carried out to verify the effectiveness of our
velocity-independent seismic imaging algorithms.
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Appendix A: Notations and conventions

In this appendix, we present a detailed derivation of the inverse series up to the second order. We
use ~x and z to denote the lateral and vertical coordinates in space, respectively. t is used to denote
the time. The Fourier conjugate of t is ω. Fourier transform between ~x and its Fourier conjugate
~km is defined as:

f̃(~km) =
~∫
d~xe−i

~km•~xf(~x) f(~x) =
1

4π2

~∫
d~kme

i~km•~xf̃(~km) (42)

The Fourier transform between z and its Fourier conjugate kz is defined as:

f̃(kz) =

∞∫
−∞

dzeikzzf(z) f(z) =
1
2π

∞∫
−∞

dkze
−ikzz f̃(kz) (43)

We use the tilde sign on top of a function to denote its Fourier transform throughout this note.
Single tilde sign means that this expression is in (~km, z) domain, double tilde sign means that this
expression is in (~km, kz). Because α1 is a function of (~x, z), time is not explicitly present in α1 and
higher order terms α2, α3, · · · . The only place where time is involved is when α1 is calculated from
measured data, which is a function of time.

A very useful concept to simplify inverse scattering terms are permutation sum. It will be defined
as follows:

For a function of two variables, like f(A,B), we define the permutation sum
∑� as:

�∑
f(A,A) = f(A,A)

�∑
f(A,B) = f(A,B) + f(B,A) A 6= B

(44)

For a function of three variables, like f(A,B,C), we define the permutation sum
∑� as (assuming

A, B, C are mutually distinct):

�∑
f(A,A,A) = f(A,A,A)

�∑
f(A,A,B) = f(A,A,B) + f(A,B,A) + f(B,A,A)

�∑
f(A,B,C) = f(A,B,C) + f(B,C,A) + f(C,A,B)

+ f(A,C,B) + f(B,A,C) + f(C,B,A)

(45)

106



Inverse scattering series with lateral variations in 3D MOSRP07

Lots of derivatives and integrals over ~x and z will be used in inverse scattering series. The following
notations are suggested for conciseness: αx def= ∂α

∂~x (which is actually the vector
(
∂α
∂x ,

∂α
∂y

)
), αz def= ∂α

∂z ,

αx+z
def= ∂2α

∂~x∂z , α
−z =

∫ z
−∞ duα(~x, u), α−2z =

∫ z
−∞ du

∫ u
−∞ dvα(~x, v). The reason to use these

notations above is that most of the integrals in the derivation are expressible in the form mentioned
above. The much more powerful usual notations are not necessary to carry all the physics.

Using superscripts to denote derivatives will cause confusion with powers. That is why in the many
places in the derivation procedure, the square of A is often written as AA rather than the popular
A2.

Assuming both A B, and C are functions of ~x and z, the fact that ∂(AB)
∂z = ∂A

∂z B + A∂B
∂z can be

expressed in the short hand notation as:

[AB]z = AzB +ABz. (46)

Likewise ∂(AB)
∂~x = ∂A

∂~xB +A∂B
∂~x can be expressed as:

[AB]x = AxB +ABx. (47)

With integration by parts, we can easily reach the following identity
∫ z
−∞A(u)B(u)du =

(∫ z
−∞A(u)du

)
B(z)−∫ z

−∞

(∫ z
−∞A(v)dv

)
B′(u)du, it can be very conveniently expressed in the following short-hand-

notation:
[AB]−z = A−zB −

[
A−zBz

]−z
. (48)

Of course, there is another way to do the integration by parts, which can be expressed in ordinary
notation as,

∫ z

−∞
A(u)B(u)du = A(z)

(∫ z

−∞
B(u)du

)
−
∫ z

−∞
A′(u)

(∫ z

−∞
B(v)dv

)
du.

It can be expressed in our short-hand notation as,

[AB]−z = AB−z −
[
AzB−z]−z. (49)

A very useful equation is: [
A
[
A−z

]m]−z =
1

m+ 1
[
A−z

]m+1 (50)

This means:
z∫

−∞
A(u)

(∫ u
−∞A(v)dv

)m
du = 1

m+1

(∫ z
−∞A(u)du

)m+1
. It can be proved by carrying

out the ∂
∂z operation on both sides, both left- and right-hand-side will end up with: A(z)

(∫ z
−∞A(u)du

)m
.

Another useful simplification of integrals is the following:
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[
AB−z]−z +

[
A−zB

]−z = A−zB−z (51)

which can be easily proved by taking the partial derivative over z on both sides.

Several popular rules for integration over δ-functions are summarized below:

∞∫
−∞

f(z)δ(z − z0) = f(z0) (52)

∞∫
−∞

f(z)δ′(z − z0) = −f ′(z0) (53)

∞∫
−∞

f(z)δ′′(z − z0) = f ′′(z0) (54)

Rules mentioned above will be used over and over again in the derivation process. In order to make
clear which rule is used, I use the following notation:

· · · =
−−→
(54) = · · ·

to denote the simplification rule specified in equation (54) is used to justify the equivalence between
the left and right-hand side.

But some integrals cannot be expressed in the form above, for example, the integral in internal
multiple removal. we choose to define any new form of integral by short-hand notations. we define
some integrals involved the higher-lower-higher relation (w-diagram), which is critical in the internal
multiple algorithm in the inverse scattering series:

IM1(A,B,C) =

z∫
−∞

duA(u)

z∫
−∞

dvC(v)B(u+ v − z) (55)

IM2(A,B,C) =

z∫
−∞

duA(u)

z∫
−∞

dv(z − v)C(v)B(u+ v − z) (56)

IM3(A,B,C) =

z∫
−∞

duA(u)

z∫
−∞

dv(z − v)2C(v)B(u+ v − z) (57)

108



Inverse scattering series with lateral variations in 3D MOSRP07

IM3X(A,B,C) =

z∫
−∞

du
∂2A(~x, u)
∂~x2

∂2

∂x2

z∫
−∞

dv(z − v)2C(~x, v)B(~x, u+ v − z) (58)

IM4(A,B,C) =

z∫
−∞

du(z − u)A(u)

z∫
−∞

dv(z − v)C(v)B(u+ v − z) (59)

IM4X(A,B,C) =

z∫
−∞

du(z − u)
∂A(u)
∂~x

∂

∂x

z∫
−∞

dv(z − v)C(v)B(u+ v − z) (60)
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Appendix B: Derivation strategies

The mathematics involved in computation of the multidimensional inverse scattering series is com-
plicated, and can be made much more straightforward with some simple conventions. This section
provides an overview and intuitive introduction to a particular and useful derivation convention.

Let us begin by reviewing the first order portions of the inverse scattering series, closely following
the development of, e.g., Weglein et al. (2003). The desired scattering potential V , which for our
purposes describes perturbations of wavespeed away from a constant background wavespeed c0:

V (~x, z, ω) =
ω2

c20
α(~x, z),

(in which α(~x, z) = 1 − c20/c
2(~x, z) for a true wavespeed distribution c(~x, z)), can be expressed in

terms which are first, second, third, ... order in data : α(~x, z) =
∑∞

n=1 αn(~x, z). The relationship
between various part of V , and corresponding part of α, can be summarized as:

Vn(~x, z, ω) =
ω2

c20
αn(~x, z), (n = 1, 2, 3, · · · · ··)

The first order (linear) portion of the inverse scattering series is an exact relationship between V1

and the scattered field evaluated on a measurement surface (i.e. the data D). In the operator form,
this relationship is

G0V1G0 = D = G−G0. (61)

Next, consider the well-known α2 equation:

G0V2G0 = −G0V1G0V1G0

With n ≥ 3, the portion of α which is n-th order in data will contain considerably more terms. For
example, α3 contains three pieces:

G0V3G0 = −G0V1G0V1G0V1G0 −G0V2G0V1G0 −G0V1G0V2G0.

Generally speaking, for an arbitrary positive integer m, the number of corresponding m-th order
terms in the inverse series will depend on how many ways m can be expressed in terms of the sum
of smaller positive integers. For example, if m = 4, 4 can be expressed in seven different ways:
4 = 1 + 1 + 1 + 1 = 1 + 1 + 2 = 1 + 2 + 1 = 2 + 1 + 1 = 2 + 2 = 1 + 3 = 3 + 1. That means α4 will
have seven pieces:

G0V4G0 =−G0V1G0V1G0V1G0V1G0 −G0V1G0V1G0V2G0 −G0V1G0V2G0V1G0

−G0V2G0V1G0V1G0 −G0V2G0V2G0 −G0V1G0V3G0 −G0V3G0V1G0.
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In order to make clear where each piece comes from, we denote each piece differently. One approach
is to use newly defined functions. For example, we define k = ω/c0, and define the solution of the
following problem:

G0k
2FG0 = −G0k

2A1G0k
2A2G0

as

F = SC2 (A1, A2)

In this general formulism, both A1 and A2 can be α1, α2, α3, · · · . For example, the simplest case
in the ISS: A1 = A2 = α1, can be expressed as: α2 = SC2 (α1, α1).

Likewise, we define the solution of the following equation:

G0k
2FG0 = −G0k

2A1G0k
2A2G0k

2A3G0

as

F = SC3 (A1, A2, A3)

Generally speaking, for an integer n ≥ 2, we define the solution of the following equation:

G0k
2FG0 = −G0k

2A1G0k
2A2 · · · k2AnG0

as

F = SCn (A1, A2, · · ·, An)

The definitions above can be used to express the first four terms in the inverse scattering series:

α2 =SC2 (α1, α1)
α3 =SC3 (α1, α1, α1) + SC2 (α1, α2) + SC2 (α2, α1)
α4 =SC4 (α1, α1, α1, α1) + SC3 (α1, α1, α2) + SC3 (α1, α2, α1) + SC3 (α2, α1, α1)

+SC2 (α2, α2) + SC2 (α1, α3) + SC2 (α3, α1)

These functions not only differentiate terms, they also shorten the derivation process. For example,
SC2 can be derived once, and used repeatedly later.
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One might notice that, for example, in the α4 term, all different permutations of (α1, α1, α2) are
involved. It is natural to ask if the sum of these similar looking terms possess some symmetry
not manifested in each individual term? The answer is yes, especially for the portion which is 1D
generalizable (the only surviving term if the Earth is indeed horizontal).

We define the permutation sum of SC as SC, for example, in the case of SC2, we define:

SC2 (A1, A2) =
�∑
SC2 (A1, A2)

where the permutation sum acting on a function of two variables is defined in equation (44).

In the case of SC3, if A1 A2 , and A3 are different from each other, we define:

SC3 (A1, A2, A3) =
�∑
SC3 (A1, A2, A3)

where the permutation sum acting on a function of three variables is defined in equation (45).

Strictly speaking, SC2 is a function of (A1, A2), and can be expressed in (~x, z), (~km, z), or (~km, kz)
domain. In this note, SC3 (without tilde above) means the representation in the (~x, z) domain.

S̃C2 (with single tilde above) means the representation in the (~km, z) domain. ˜̃SC2 (with double
tilde above) means the representation in the (~km, kz) domain. If not specified, SC2 is assumed as
the function of (A1, A2).

For SC3, we use tilde sign to explicitly denote its domain, just like the case for SC2. If not specified,
SC3 is assumed as a function of (A1, A2, A3).

Very similar logic is applied to later functions.

With definitions above, α4 can written as:

α4 = SC4 (α1, α1, α1, α1) + SC3 (α1, α1, α2) + SC2 (α1, α3) + SC (α2, α2) (62)

Within one index n, especially when n is large, there remain many very different terms. We
differentiate those terms further. Here we introduce another index m, with n ≥ m ≥ 1, to denote
how fast each term grows with respect to kz. The reason behind this is that, in the equation to
invert for SCn, we will obtain a distribution behave like kn−1

z asymptotically in the kz domain. If
the Earth is 1D, only the portion of the distribution which is of the order of kn−1

z is needed, the
other portions will be discarded by the sifting property of the δ-function (see Liu et. al. 2004).
If the Earth is not 1D, the other portions, which will be separated into lower powers of kz as:
kn−2
z , kn−3

z , · · ·, k0
z . We use 1 ≤ m ≤ n to denote the piece associated with kn−mz . We use m = n+1

to denote the remaining parts.
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Inside each (n,m), there are still very different looking terms. For example, in the internal multiple
removal, only the part of the third term in which the three scatters satisfy the higher-lower-higher
relation is necessary: z1 ≥ z2 ≤ z3. How many high-low relations exist between n scatters:
z1, z2, · · ·, zn? There are 2n−1 of them because there two possible relations between two adjacent
scatters zj and zj+1, either zj ≥ zj+1 or zj ≤ zj+1. That is why we introduce a third index l,
1 ≤ l ≤ 2n−1 to further differentiate the terms. In the current classification scheme, the equation
to calculate the index l is:

l = (d1d2 · · · dn−1)b + 1 (63)

where (d1d2 · · · dn−1)b is an integer in binary representation, its j-th digit, dj is either 0 or 1
depending whether or not zj ≥ zj+1.

In summary, we systematically classify the function SCn into SCn,m,l, where 1 ≤ m ≤ n+1 denotes
the asymptotic power of the term in terms of kz, with m = 1 denotes the highest power. The last
index 1 ≤ l ≤ 2n−1 denotes where he high-low relationship between adjacent scatters.
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Appendix C: Derivation of SC2

In this section, we solve for: F = SC2 (A1, A2), or equivalently:

G0k
2FG0 = −G0k

2A1G0A2G0. (64)

Expressing equation (64) explicitly in the actual integral form,

~∫
d~x1

∞∫
−∞

dz1G0(~xg, zg, ~x1, z1, ω)
(
ω

c0

)2

F (~x1, z1)G0(~x1, z1, ~xs, zs, ω)

= −
~∫
d~x1

∞∫
−∞

dz1G0(~xg, zg, ~x1, z1, ω)
(
ω

c0

)2

A1(~x1, z1)

~∫
d~x2

∞∫
−∞

dz2G0(~x1, z1, ~x2, z2, ω)
(
ω

c0

)2

A2(~x2, z2)G0(~x2, z2,~ks, zs, ω).

(65)

We next Fourier transform over lateral geophone and shot coordinates: ~
∫
d~xg

~∫ d~xsei~ks~xs−i~kg~xg , and
express the Green’s function in the middle of the right-hand-side of equation (65) as

G0(~x1, z1, ~x2, z2, ω) =
1

4π2

~∫
d~k1

ei
~k1•(~x1−~x2)eiq1|z1−z2|

2iq1
,

in which ~k1 is conjugate to ~x1, and q1 = sgn(ω)
√

(ω/c0)
2 − k2

1.

This results in

− 1
4c20

ω2

qgqs

˜̃
F (~kg − ~ks, kz)e−i(qgzg+gszs) = − i

32π2c40

~∫
d~k1

ω4

qgq1qs

∞∫
−∞

dz1Ã1(~kg − ~k1, z1)

∞∫
−∞

dz2Ã2(~k1 − ~ks, z2)ei[qg(z1−zg)+q1|z2−z1|+qs(z2−zs)].

(66)

The quantity

Ã1(~km, z) =
1
2π

∫ ∞

−∞
dkze

−ikzz ˜̃A1(~km, kz)

is the Fourier transform of A1(~xm, z), and ˜̃F (~km, kz) is the Fourier transform of F (~xm, z) over both
~xm and z.

We next compute F in the (~km, z) domain: we apply the inverse Fourier transform,
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1
2π

∫ ∞

−∞
e−ikzzdkz,

to equation (66). The intemediate result is,

F̃ (~kg − ~ks, z) =
1

16π3c20

∫ ∞

−∞
d~k1

∫ ∞

−∞
dz1

∫ ∞

−∞
dz2

∫ ∞

−∞
dkz

iω2

q1
Ã1(~kg − ~k1, z1)Ã2(~k1 − ~ks, z2)ei[qg(z1−z)+q1|z2−z1|+qs(z2−z)].

(67)

The innermost integral of equation (67) contains Ã1 and Ã2, which depends on the measurement of
the wave field; it can be taken out of this integral (with respect to kz) if the data are parameterized
such that the Fourier conjugate kh of the lateral offset coordinate to be 0. See Clayton and Stolt
(1981) for a more detailed discussion. Making this choice, we have:

~kh = ~kg + ~ks = 0,
ω

c0
=

1
2
sgn(kz)

√
k2
z + k2

m,

~kg = −~ks = 0.5~km,

(68)

which results in a simplified expression for F̃ (~km, z):

F̃ (~km, z) =
1

32π3

~∫
d~k1

∞∫
−∞

dz1Ã1(
~km
2
− ~k1, z1)

∞∫
−∞

dz2Ã2(~k1 +
~km
2
, z2)γ̃2(~km,~k1; ε0, ε1), (69)

where

γ̃2(~km,~k1; ε0, ε1) =

∞∫
−∞

dkzi
k2
z + k2

m

u1
ei[ε0kz+ε1u1] =

∞∫
−∞

dkzi
k2
z + k2

m

u1
ei4ψei[ε0+ε1]kz , (70)

and where we have defined:

ε0 = 0.5(z1 + z2)− z

ε1 = 0.5|z1 − z2|

u1 = 2q1 = sgn(kz)
√
k2
z + a1

a1 = k2
m − 4k2

1

4ψ = ε1(u1 − kz).

(71)

Notice that the expression γ̃2(~km,~k1; ε0, ε1) does not depend on the measured data; it may be
computed once and used repeatedly, saving on computation.
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Evaluation of F = SC2 (A1, A2) in the (~km, z) domain

From equation (70), it is easy to tell that γ̃2 is not an ordinary function because lim
kz→∞

u1
kz

= 1, so

the integrand (k2
z + k2

m)/(u1) approaches kz as kz → ∞. We decompose iei4ψ(k2
z + k2

m)/(u1) as
follows:

i
k2
z + k2

m

u1
ei4ψ = ikz −

ε1a1

2
+ ˜̃ξ2

˜̃
ξ2 = i

k2
z + k2

m

u1
ei4ψ − ikz +

ε1a1

2

(72)

Decomposition above is based on the fact that, after put into the integral of inverse Fourier trans-
form

∫∞
−∞ dkze

i(ε0+ε1)kz , the first term kz will result in a singular distribution:

∫ ∞

−∞
ikze

i(ε0+ε1)kzdkz =
∂
∫∞
−∞ ei(ε0+ε1)kzdkz

∂(ε0 + ε1)
= (2π)δ′(ε0 + ε1)

Likewise another singular distribution is produced by the second term:∫ ∞

−∞
−ε1a1

2
ei(ε0+ε1)kzdkz = −πε1a1δ(ε0 + ε1)

But the distribution produced by the third term:∫ ∞

−∞

˜̃
ξ2e

i(ε0+ε1)kzdkz

is regular because lim
kz 7→∞

˜̃
ξ2kz = ik2

m
2 + 2k2

1 −
ε21a

2
1

8 , which is a finite constant. For the purpose of

short notation, let us denote the numerically expressible function as ξ̃2:

ξ̃2(~km,~k1; ε0, ε1) =
∫ ∞

−∞

˜̃
ξ2e

i(ε0+ε1)kzdkz (73)

So we decompose γ̃2(~km,~k1; ε0, ε1) into 2 singular distributions and 1 regular distribution:

γ̃2(~km,~k1; ε0, ε1) = (2π)δ′(ε0 + ε1)− πε1a1δ(ε0 + ε1) + ξ̃2(~km,~k1; ε0, ε1). (74)

From equation (69) and equation (70), the explicit expression of the phase term ε0 + ε1 depends on
z1 ≥ z2 or z1 ≤ z2, and in the first case ε0 + ε1 = z1− z. So equation (74) can be further expressed
as:

γ̃2(~km,~k1; ε0, ε1) = (2π)δ′(z1 − z)− πε1a1δ(z1 − z) + ξ̃2

(
~km,~k1;

z1 + z2
2

− z,
z1 − z2

2

)
(75)
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In the second case ε0 + ε1 = z2 − z. So equation (74) can be further expressed as:

γ̃2(~km,~k1; ε0, ε1) = (2π)δ′(z2 − z)− πε1a1δ(z2 − z) + ξ̃2

(
~km,~k1;

z1 + z2
2

− z,
z2 − z1

2

)
(76)

Substituting equation (75) or equation (76) into equation (69), depending on z1 ≥ z2 or z1 ≤ z2,
we can decompose F into three terms:

F̃ (~km, z) =
1

32π3

~∫
d~k1

∞∫
−∞

dz1Ã1

(
~km
2 − ~k1, z1

) z1∫
−∞

dz2Ã2

(
~k1 + ~km

2 , z2

)
γ̃2

(
~km,~k1; z1+z2

2 − z, z1−z22

)
+

∞∫
−∞

dz2Ã1

(
~k1 + ~km

2 , z2

) z2∫
−∞

dz1Ã2

(
~k1 + ~km

2 , z1

)
γ̃2

(
~km,~k1; z1+z2

2 − z, z2−z12

)


= S̃C2,1 + S̃C2,2 + S̃C2,3,

(77)

The split above is based on the classification idea described in the equation (63). For the first case:
z1 ≥ z2, the binary expression for this relation is 0, its corresponding index is l = 0 + 1 = 1. For
the second case: z1 ≤ z2, the binary expression for this relation is 1, its corresponding index is
l = 1 + 1 = 2.

The first term S̃C2,1 is further decomposed as:

S̃C2,1 = S̃C2,1,1 + S̃C2,1,2 (78)

S̃C2,1,1 =
1

32π3

~∫
d~k1

∞∫
−∞

dz1δ
′(z1 − z)Ã1(0.5~km − ~k1, z1)

z1∫
−∞

dz2Ã2(~k1 + 0.5~km, z2)(2π).

Using equation (53), we have,

= − 1
16π2

~∫
d~k1

∂Ã1(0.5~km − ~k1, z)
∂z

z∫
−∞

dz2Ã2(~k1 + 0.5~km, z2)

− 1
16π2

~∫
d~k1Ã1(0.5~km − ~k1, z)Ã2(~k1 + 0.5~km, z)

S̃C2,1,2 =
2π

32π3

~∫
d~k1

∞∫
−∞

dz2δ
′(z2 − z)Ã2

(
~k1 +

~km
2
, z2

) z2∫
−∞

dz1Ã1

(
~km
2
− ~k1, z1

)
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Using equation (53), we have,

= − 1
16π2

~∫
d~k1

∂Ã2(~k1 + 0.5~km, z)
∂z

z∫
−∞

dz2Ã1(0.5~km − ~k1, z2)

− 1
16π2

~∫
d~k1Ã1(0.5~km − ~k1, z)Ã2(~k1 + 0.5~km, z)

So we split S̃C2,1,1 and S̃C2,1,2 into two parts by integration by parts (which is used to get the
last step in the derivation above). In each case, the first part contains the first two terms in the
right-hand-side of the last equal sign above, they are purely responsible for imaging in the special
case of A1 = A2 = α1. The last term is responsible for parameter inversion in the special case
mentioned above. Only SC2,1 will not vanish if we indeed have a 1D Earth.

S̃C2,2 =
1

32π3

~∫
d~k1

∞∫
−∞

dz1Ã1(0.5~km − ~k1, z1)
z1∫

−∞
dz2Ã2(~k1 + 0.5~km, z2)(−πε1a1)δ(z1 − z)

∞∫
−∞

dz2Ã2(~k1 + 0.5~km, z2)
z2∫

−∞
dz1Ã1(0.5~km − ~k1, z1)(−πε1a1)δ(z2 − z)


= S̃C2,2,1 + S̃C2,2,2

The split above is based on the high-low relation between z1 and z2. For the first case: z1 ≥ z2,
the binary expression for this relation is 0, its corresponding index is l = 0 + 1 = 1. For the second
case: z1 ≤ z2, the binary expression for this relation is 1, its corresponding index is l = 1 + 1 = 2.

S̃C2,2 = S̃C2,2,1 + S̃C2,2,2

S̃C2,2,1 = − 1
64π2

~∫
d~k1 (k2

m − 4k2
1)Ã1(0.5~km − ~k1, z)

z∫
−∞

du(z − u)Ã2(~k1 + 0.5~km, u)

S̃C2,2,2 = − 1
64π2

~∫
d~k1 (k2

m − 4k2
1)Ã2(0.5~km + ~k1, z)

z∫
−∞

du(z − u)Ã1(0.5~km − ~k1, u).

S̃C2,2 will vanish if we have a 1D Earth. Even for geological model with lateral variations, S̃C2,2 is
very clean for the portion where the Earth is horizontal. F̃2 is strong where the model is laterally
varying.
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The third term is regular, and can be literally implemented as the form in equation (69). Because
ξ̃2(~km,~k1; ε0, ε1) is regular, no integration by parts is needed.

S̃C2,3 = S̃C2,3,1 + S̃C2,3,2

where:

S̃C2,3,1 =
1

32π3

~∫
d~k1

∞∫
−∞

dz1Ã1(0.5~km − ~k1, z1)

z1∫
−∞

dz2

Ã2(~k1 + 0.5~km, z2)ξ̃2

(
~km,~k1;

z1 + z2
2

− z,
z1 − z2

2

)

S̃C2,3,2 =
1

32π3

~∫
d~k1

∞∫
−∞

dz2Ã2(0.5~km + ~k1, z2)

z2∫
−∞

dz1

Ã2(0.5~km − ~k1, z1)ξ̃2

(
~km,~k1;

z1 + z2
2

− z,
z2 − z1

2

)
,

(79)

where ξ̃2 is defined in equation (73)

The further classification is based on the relative high-low relation between z1 and z2.

Evaluation of F = SC2 (A1, A2) in the (~x, z) domain

The suggestion of transforming the results in the previous subsection into space domain, came from
Arthur Weglein.

We then go a step further by applying the inverse Fourier transform (1/4π2)~
∫
d~kme

i~km•~x to the
results above to have:

SC2,1,1(~x, z) =
1

4π2

~∫
d~kme

i~km•~x S̃C2,1,1(~km, z)

= − 1
64π4

~∫
d~k1

~∫
ei
~km•~x d~km

∂Ã1(0.5~km − ~k1, z)
∂z

z∫
−∞

dz2Ã2(~k1 + 0.5~km, z2)

− 1
64π4

~∫
d~k1

~∫
ei
~km•~x d~kmÃ1(0.5~km − ~k1, z)Ã2(~k1 + 0.5~km, z).
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Using equation (88), we have,

SC2,1,1(~x, z) = −1
4

∂A1(~x, z)
∂z

z∫
−∞

duA2(~x, u) + A1(~x, z)A2(~x, z)

 (80)

SC2,1,2(~x, z) =
1

4π2

~∫
d~kme

i~km•~x S̃C2,1,2(~km, z)

= − 1
64π4

~∫
d~k1

~∫
ei
~km•~x d~km

∂Ã2(~k1 + 0.5~km, z)
∂z

z∫
−∞

dz1Ã1(0.5~km − ~k1, z1)

− 1
64π4

~∫
d~k1

~∫
ei
~km•~x d~kmÃ1(0.5~km − ~k1, z)Ã2(~k1 + 0.5~km, z).

Using equation (88), we have,

SC2,1,2(~x, z) = −1
4

∂A2(~x, z)
∂z

z∫
−∞

duA1(~x, u) + A1(~x, z)A2(~x, z)

 (81)

We sum the two equations above to have:

SC2,1(~x, z) = SC2,1,1(~x, z) + SC2,1,2(~x, z)

= −1
4

∂A1(~x, z)
∂z

z∫
−∞

duA2(~x, u) +
∂A2(~x, z)

∂z

z∫
−∞

duA1(~x, u) + 2A1(~x, z)A2(~x, z)



SC2,2,1(~x, z) =
1

4π2

~∫
d~kme

i~km•~x S̃C2,2,1(~km, z)

= − 1
256π4

~∫
d~k1

~∫
d~kme

i~km•~x (k2
m − 4k2

1)Ã1(0.5~km − ~k1, z)

z∫
−∞

dz2(z − z2)Ã2(~k1 + 0.5~km, z2)

−−→
(89) =

1
4
∂A1(~x, z)

∂x

z∫
−∞

du
∂A2(~x, u)

∂~x
(z − u)

−−→
(85) =

1
4
∂A1(~x, z)

∂x

z∫
−∞

du

u∫
−∞

dv
∂A2(~x, v)

∂~x

(82)
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SC2,2,2(~x, z) =
1

4π2

~∫
d~kme

i~km•~x S̃C2,2,2(~km, z)

= − 1
256π4

~∫
d~k1

~∫
d~kme

i~km•~x (k2
m − 4k2

1)Ã2(0.5~km − ~k1, z)

z∫
−∞

dz1(z − z2)Ã1(~k1 + 0.5~km, z2)

−−→
(89) =

1
4
∂A2(~x, z)

∂x

z∫
−∞

du
∂A1(~x, u)

∂~x
(z − u)

−−→
(85) =

1
4
∂A2(~x, z)

∂x

z∫
−∞

du

u∫
−∞

dv
∂A1(~x, v)

∂~x

(83)

We sum the two equations above to have:

SC2,2(~x, z) = SC2,2,1(~x, z) + SC2,2,2(~x, z)

=
1
4
∂A1(~x, z)

∂x

z∫
−∞

du

u∫
−∞

dv
∂A2(~x, v)

∂~x
+

1
4
∂A2(~x, z)

∂x

z∫
−∞

du

u∫
−∞

dv
∂A1(~x, v)

∂~x

(84)

In the derivation process above, the relation below was used to make the expression more symmet-
rical. For convenience, let us define: B(~x, z) =

∫ z
−∞ duA(~x, u), dB(~x, z) = A(~x, z)dz, we have:

z∫
−∞

duA(~x, u)(z − u) =

z∫
−∞

(z − u)dB(~x, u)

= [(z − u)B(~x, u)]u=zu=−∞ −
z∫

−∞

B(~x, u)d(z − u)

=

z∫
−∞

B(~x, u)du =

z∫
−∞

du

u∫
−∞

A(~x, v)dv

(85)

Simplification and clarification in physical interpretations have occured after Fourier transformation
of the singular terms SC2,1 and SC2,2. However, in the regular term SC2,3, no simplification and
clarification have been found in this manner.

We summarize various parts of SC2(A1, A2) in the short-hand notation as:
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SC2(A1, A2) SC2(A2, A1)
SC2,1,1 −1

4

(
Az1A

−z
2 +A1A2

)
−1

4

(
Az2A

−z
1 +A1A2

)
SC2,1,2 −1

4

(
Az2A

−z
1 +A1A2

)
−1

4

(
Az1A

−z
2 +A1A2

)
SC2,2,1 −1

4A
x
1A

x−2z
2 −1

4A
x
2A

x−2z
1

SC2,2,2 −1
4A

x
2A

x−2z
1 −1

4A
x
1A

x−2z
2

SC2,3,1 SC2,3,1 (A1, A2) SC2,3,2 (A1, A2)
SC2,3,2 SC2,3,2 (A1, A2) SC2,3,1 (A1, A2)

In the general case of A1 6= A2, we have:

SC2 (A1, A2) = SC2 (A1, A2) + SC2 (A2, A1)

= −1
2
(
2A1A2 +Az1A

−z
2 +Az2A

−z
1

)
+

1
2
Ax1A

x−2z
2 +

1
2
Ax2A

x−2z
1

+ 2SC2,3,1 (A1, A2) + 2SC2,3,1 (A2, A1)

(86)

In the special case of A1 = A2 = A, we have:

SC2 (A,A) = SC2 (A,A) = −1
2
(
A2 +AzA−z

)
+

1
2
AxAx−2z + 2SC2,3,1 (A,A) (87)

Or in the simplest case: A1 = A2 = α1, we have α2:

α2 = SC2 (α1, α1) = SC2 (α1, α1) = −1
2
(
α2

1 + αz1α
−z
1

)
+

1
2
αx1 • αx−2z

1 + 2SC2,3,1 (α1, α1)

where Sc2,3,1 is implemented in the (~km, z) domain as defined in equation (79)
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Appendix D: Several useful Fourier integrals over the lateral wave-numbers

If we define:

f̃1

(
~k
)

=
~∫
d~xei

~k•~x f1(~x ) f̃2

(
~k
)

=
~∫
d~xei

~k•~x f2(~x )

then we have,

~∫
d~k1

~∫
ei
~km•~x d~kmf̃1(0.5~km − ~k1)f̃2(~k1 + 0.5~km) = 16π4f1(~x )f2(~x ), (88)

and

~∫
d~k1

~∫
ei
~km•~x d~km

(
k2
m − 4k2

1

)
f̃1(0.5~km − ~k1)f̃2(~k1 + 0.5~km) = −64π4∂f1(~x )

∂~x
• ∂f2(~x )

∂~x
. (89)

For the proof of equation (88) and (89), let’s define: ~h1 = 0.5~km−~k1 and ~h2 = 0.5~km+~k1, we have:
~km = ~h1 +~h2, k2

m−4k2
1 = 4~h1 •~h2, and the following integration relation after changing integration

variables from (~k1,~km) to (~h1,~h2):

~∫
d~k1

~∫
d~km =

~∫
d~h1

~∫
d~h2 . (90)

Let us further rewrite,

f̃1(0.5~km − ~k1) = f̃1(~h1) =
~∫
d~x ′ f1(~x ′ )e−i

~h1•~x ′
,

f̃2(~k1 + 0.5~km) = f̃1(~h2) =
~∫
d~x ′ f2(~x ′′ )e−i

~h2•~x ′′
.

(91)

Using equation (90) and (91), we can rewrite the left-hand-side of equation (88) as,
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~∫
d~h1

~∫
d~h2e

i(~h1+~h2)•~x
~∫
d~x ′ f1(~x ′ )e−i

~h1•~x ′ ~
∫
d~x ′′ f2(~x ′′ )e−i

~h2•~x ′′

=
~∫
d~h1

~∫
d~h2

~∫
d~x ′ f1(~x ′ )e−i

~h1•~x ′
ei
~h1•~x

~∫
d~x ′′ f2(~x ′′ )e−i

~h2•~x ′′
ei
~h2•~x

=
~∫
d~h1

~∫
d~h2

~∫
d~x ′ f1(~x ′ )ei

~h1•(~x−~x ′ )
~∫
d~x ′′ f2(~x ′′ )ei

~h2•(~x−~x ′′ )

=
~∫
d~x ′ f1(~x ′ )

~∫
d~h1e

i~h1•(~x−~x ′ )
~∫
d~x ′′ f2(~x ′′ )

~∫
d~h2e

i~h2•(~x−~x ′′ )

=
~∫
d~x ′ f1(~x ′ )(4π2)δ(~x − ~x ′ )

~∫
d~x ′′ f2(~x ′′ )(4π2)δ(~x − ~x ′′ ) = 16π4f1(~x )f2(~x )

Similarly, using the fact that: k2
m−4k2

1 = 4~h1 •~h2, equation (90) and equation (91), we can rewrite
the left-hand-side of equation (89) as,

~∫
d~h1

~∫
d~h2

(
4~h1 • ~h2

)
ei(
~h1+~h2)•~x

~∫
d~x ′ f1(~x ′ )e−i

~h1•~x ′ ~
∫
d~x ′′ f2(~x ′′ )e−i

~h2•~x ′′

=
~∫
d~h1

~∫
d~h2

(
−4
[
i~h1

]
•
[
i~h2

]) ~∫
d~x ′ f1(~x ′ )e−i

~h1•~x ′
ei
~h1•~x

~∫
d~x ′′ f2(~x ′′ )e−i

~h2•~x ′′
ei
~h2•~x

=− 4
~∫
d~h1

~∫
d~h2

([
i~h1

]
•
[
i~h2

]) ~∫
d~x ′ f1(~x ′ )ei

~h1•(~x−~x ′ )
~∫
d~x ′′ f2(~x ′′ )ei

~h2•(~x−~x ′′ )

=− 4
~∫
d~x ′ f1(~x ′ )

~∫
d~h1

[
i~h1

]
ei
~h1•(~x−~x ′ ) •

~∫
d~x ′′ f2(~x ′′ )

~∫
d~h2

[
i~h2

]
ei
~h2•(~x−~x ′′ )

=− 4
~∫
d~x ′ f1(~x ′ )(4π2)δ′(~x − ~x ′ ) •

~∫
d~x ′′ f2(~x ′′ )(4π2)δ′(~x − ~x ′′ ) = −64π4∂f1(~x )

∂~x
• ∂f2(~x )

∂~x
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Deriving an imaging algorithm for a laterally invariant multi-parameter
acoustic medium from the inverse scattering series

S. Jiang and A. B. Weglein

Abstract

Imaging challenges in a complex earth can be a significant obstacle to seismic effectiveness.
The purpose of the research presented here is to extend the velocity only varying acoustic
leading and higher order imaging methods of F. Liu to a multi-parameter earth, and thereby
towards model type independence. A conjectured imaging candidate algorithm using inverse
scattering series, appropriate for a 1D two-parameter (density and velocity variation) acoustic
medium, was proposed by Weglein in 2007, and thereafter further extended by Weglein to
multi-D multi-parameter acoustic/elastic media. The conjectured imaging algorithm for the 1D
acoustic two-parameter medium is derived and examined in this report. The calculation of the
inverse scattering series (ISS ) third order term leads to the identification of an imaging sub-
series for the 1D two-parameter acoustic medium. Because it is a partial capture of the imaging
series in the ISS, this imaging sub-series is called the leading order imaging sub-series (LOIS ).
It can be expressed in a closed form which justifies the conjectured imaging algorithm. The two
parameters of the medium are imaged together as a composite linear to a data set. The imaging
result can be expressed as a shifted seismic data set in the pseudo-depth domain. This method
has the promise of imaging P-P data in an acoustic or isotropic multi-D elastic medium. The
image is a structure map, not suited for subsequent AVO analysis. Tests on multi-parameter
acoustic and elastic media are planned.

Introduction

Many pressing challenges in current seismic exploration can be addressed by using the inverse scat-
tering series (ISS ) (Weglein, 1985; Weglein et al., 1997, 2003). For instance, depth imaging using
ISS proceeds without knowing any subsurface information (subsurface velocity fields, for example).
The development of depth imaging algorithm at M-OSRP is proceeding in stages:
Stage (1) - for a 1D one parameter (velocity variation only) acoustic medium, a leading order imag-
ing sub-series (LOIS ) is identified and tested in Weglein et al. (2000); Shaw et al. (2002); Shaw and
Weglein (2003); Shaw (2005). It works for a layered medium with small velocity contrasts, because
this imaging series is a partial capture of the whole imaging series. The LOIS can be written as a
closed form.

Stage (2) - for a multi-D one parameter (velocity variation only) acoustic medium, a laterally vari-
ant acoustic medium with large velocity contrasts is considered. The calculation of the ISS terms
in the multi-D medium leads to more imaging terms identified in which there are imaging terms
without analog in the 1D medium. These terms deal with the lateral variations of the medium.
By capturing more imaging terms than the LOIS in the 1D acoustic case, a higher order imaging
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sub-series (HOIS ) and corresponding closed form are identified and numerically tested on a salt
model with lateral variation and large velocity contrasts (Liu et al., 2004, 2005; Liu, 2006). The
encouraging numerical test result indicates the HOIS imaging algorithm works very well for a multi-
dimensional acoustic medium with velocity variation only. The logic connection and understanding
between the LOIS and HOIS closed forms for depth imaging have been analyzed in Zhang et al.
(2007).

Stage (3) - To advance the ISS imaging algorithm application to the real earth which is a multi-
parameter medium generally, it is necessary to derive a multi-parameter (velocity, density variation
etc.) ISS imaging algorithm. In this stage, starting with the simplest model, a multi-parameter
1D acoustic medium is studied. An imaging-only term is identified in Zhang and Weglein (2005)
for a layered acoustic medium with both velocity and density variations. Following the philos-
ophy of identifying the LOIS and HOIS algorithm, a conjectured imaging algorithm for the 1D
two-parameter acoustic medium, was proposed by Weglein in 2007, and then further extended to
multi-D multi-parameter acoustic/elastic cases. The extension is straightly done by substituting
the integral in the imaging-only term of the one-parameter case with the integral of the imaging-
only term under the multi-parameter case. But the final expression of the imaging formula for a
multi-parameter medium (either acoustic or elastic) is expressed as a shifted data-set scaled by a
constant subjected to the imaged seismic model. For example, for the 1D two-parameter acoustic
medium, the conjectured imaging algorithm indicates that the two parameters will be imaged to-
gether as a composite form, in other words, the imaging task does not distinguish which parameter,
either velocity or density, should be recognized to image, but recognize them as a combined form
linear to the measured data set - a “composite”. If there is no variation of the velocity parameter
in the medium, then the imaging algorithm will shut down automatically and immediately. To
justify the conjectured imaging algorithm, higher ISS terms need to be calculated so that higher
order imaging-only terms can be identified and collected to develop an imaging algorithm in the
multi-parameter case.

Stage (4) - for a multi-D multi-parameter acoustic medium, stage (5) - for a 1D/multi-D multi-
parameter elastic medium and stage (6) - for a model type independent depth imaging algorithm.
The imaging algorithm development for the former two stages will be continued following stage
(3) in the way to justify Weglein’s imaging conjectures. The last stage is the ultimate objective
to develop the ISS imaging algorithm - the model type independent ISS imaging algorithm which
means to image the medium by using the same algorithm without considering whether the under-
lying imaged medium is acoustic, elastic, inelastic or whatever kind of medium.

It is important to mention that all of the imaging algorithms have been developed or will be devel-
oped without knowing any priori information of the subsurface – to image directly the subsurface
medium only using the data set collected on the measurement surface and the chosen reference
wavefield (Weglein et al., 2003).

This paper presents an effort to advance research within stage (3). As a starting point, a laterally
invariant acoustic medium with both velocity and density variation (two parameters) will be con-
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sidered and studied here. Section (1) is a brief description of ISS imaging algorithm development
history within M-OSRP and the future stages to achieve the ultimate ISS imaging algorithm. Sec-
tion (2) is an introduction to the inverse scattering theory and series. The study on a two-parameter
1D acoustic medium starts from section (3) in which the work in Zhang and Weglein (2005) is intro-
duced and a series of conjectured imaging algorithms proposed by Dr. Weglein are presented. The
logic behind those conjectures will also be stated in this section. To justify the conjectured imaging
algorithm for the 1D two-parameter acoustic medium, some calculation results on the ISS higher
order (3rd order) term are shown and examined in section (4), and an LOIS imaging algorithm
(which is exactly the conjectured imaging algorithm) is derived at the end of the section (4). Some
discussion and conclusions are described in the last section.

Inverse scattering theory and series

Scattering theory is a form of perturbation analysis. Generally speaking, it describes how a pertur-
bation in the properties of a medium relates to a wavefield that experiences that perturbed medium.
Consider the two differential equations governing wave propagation in these media (Weglein et al.,
2003):

LG = δ(r− rs), (1)
L0G0 = δ(r− rs). (2)

where L, L0 and G, G0 are the actual and reference differential operators and Green’s functions,
respectively, for a single temporal frequency, ω, and δ(r − rs) is a Dirac delta function. r and rs

are the field point and source location, respectively.

Lippmann-Schwinger equation

The Lippmann-Schwinger equation is an integral solution to the wave equation (1) by using the
reference wave equation (2) and defining a perturbation operator as V = L0 − L,

Ψs = G−G0 = G0V G. (3)

where Ψs is the scattered field.

The total scattered field is related to the earth perturbation and the reference wave field (generally
using water as reference background for marine seismic exploration) by the above recursive integral
Lippmann-Schiwinger equation. It is a direct solution to the real wave equation.

Forward scattering series

Expanding equation (3) by iterating itself (Taylor, 1972), a forward scattering series is obtained,

Ψs = G0V G0 +G0V G0V G0 + · · · (4)
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= (Ψs)1 + (Ψs)2 + · · · , (5)

where (Ψs)n is the portion of Ψs that is the nth order in V . The measured value of Ψs is the data,
D, where D = (Ψs)ms = (Ψs)on the measurement surface.

The forward scattering series provides an ability of modeling the data since the perturbation V
underneath the measurement surface has been assumed known in the forward problem.

Inverse scattering series

Expanding the perturbation operator V in orders of data D yields,

V = V1 + V2 + V3 + · · · (6)

where Vn is the nth order of the data D.

An inverse scattering series is obtained by setting the same order of the data equal on both sides
of equation (4) at the measurement surface,

D = [G0V1G0]ms, (7)
0 = [G0V2G0]ms + [G0V1G0V1G0]ms, (8)
0 = [G0V3G0]ms + [G0V1G0V2G0]ms

+ [G0V2G0V1G0]ms + [G0V1G0V1G0V1G0]ms, (9)
...

The inverse scattering series provides a direct method to obtain the subsurface information by
inverting the series order by order to solve the perturbation V , only using the measured data D
and a reference wave field G0.

1D two-parameter acoustic medium

To study a 1D two-parameter acoustic medium, let us first consider the 3D acoustic wave equations
in the actual and reference medium (Zhang and Weglein, 2005),[

ω2

K(~r)
+∇ · 1

ρ(~r)
∇
]
G(~r, ~rs;ω) = δ(~r − ~rs),[

ω2

K0(~r)
+∇ · 1

ρ0(~r)
∇
]
G0(~r, ~rs;ω) = δ(~r − ~rs).

(10)

where G and G0 are the actual and reference Green’s functions, or wavefields, respectively, for a
single temporal frequency, ω. K = c2ρ, is P-bulk modulus, c is P-wave velocity and ρ is the density.
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The quantities with subscript “0” are in the reference medium, otherwise, they are in the actual
medium.

The perturbation operator is therefore defined as,

V = L0 − L =
ω2α

K0(~r)
+∇ · β

ρ0(~r)
∇, (11)

where α = 1− K0
K , β = 1− ρ0

ρ .

Similar to operator V , we also expand α and β in orders of the data, considering a 1D acoustic
medium,

α(z) = α1(z) + α2(z) + ...

β(z) = β1(z) + β2(z) + ...
(12)

Results of the first two ISS terms

Using the expansions of α and β, and inserting equation (11) into the ISS, equation (7) and equation
(8), yield the 1st order and 2nd order approximations to the two parameters (Zhang and Weglein,
2005):

D(z, θ) = −ρ0

4

[
1

cos2 θ
α1(z) +

(
1− tan2 θ

)
β1(z)

]
, (13)

and,

1
cos2 θ

α2(z) +
(
1− tan2 θ

)
β2(z)

= −1
2

1
cos4 θ

α2
1(z)−

1
2
(
tan4 θ + 1

)
β2

1(z) +
tan2 θ

cos2 θ
α1(z)β1(z)

− 1
2

1
cos4 θ

α1
′(z)

∫ z

−∞

[
α1(z ′)− β1(z ′)

]
dz ′ +

1
2
(
tan4 θ − 1

)
β1
′(z)

∫ z

−∞

[
α1(z ′)− β1(z ′)

]
dz ′.

(14)

Here we have already made an inverse Fourier transform with respect to −2qg from the original
equation, and set zg = zs = 0 for simplicity. For the two parameters case, the imaging-only terms
were identified in equation (14) as the integral terms in Zhang and Weglein (2005).

Conjectured multi-parameter imaging algorithms

In this section, a series of conjectured imaging algorithms, proposed by Weglein, for both acoustic
and elastic multi-parameter media are introduced, and the logic behind the development of those
algorithms is described.

Let us take a retrospect on the LOIS imaging algorithm development of the 1D velocity-only acous-
tic medium at normal incidence (Weglein et al., 2000; Shaw et al., 2002; Shaw and Weglein, 2003;
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Shaw, 2005). The first three orders imaging-only terms captured in the LOIS imaging algorithm
are respectively,

α1(z), −1
2
dα1(z)
dz

∫ z

−∞
α1(z ′)dz ′,

1
8
d2α1(z)
dz2

[∫ z

−∞
α1(z ′)dz ′

]2

.

In the above three terms, the z is a pseudo-depth obtained by re-scaling time with a reference
velocity (for example water speed). The derivatives outside the integrals are analyzed as “attention-
needed terms”, and the integrals are “attention-provided terms”(proposed and discussed by Weglein
in 2005/2006 M-OSRP annual reports). The attention-needed term indicates the local amplitude
variation of the imaged parameter with respect to depth z (The parameter is the velocity for the 1D
acoustic medium considered above, for instance.). This local amplitude variation examination will
show the local medium property variations (including real velocity change) of the seismic model.
If the local properties changed, this term would turn the attention light on. If and only if the
reference velocity used to locate the parameter to the pseudo-depth z is different from the real
velocity in the seismic model, then the “attention-provided term” will be turned on to correct the
migration effect by using the wrong reference velocity. And the correction will be accumulated
from the above medium down to the current pseudo-depth z by doing the integral of the velocity
difference in the 1st order. For example, in the above three terms, α1(z) is the 1st order of the
velocity parameter. The derivative of α1(z) indicates at pseudo-depth z the velocity parameter
needs “attention” by comparing the local velocity with the reference velocity. If the local velocity
is different from the reference velocity used in the inverse scattering series, then, the integral term
will provide “attention” by summing together the velocity difference down to the current pseudo-
depth z. In other words, if the used reference velocity is exactly the velocity of the underlying
imaged medium, then, the integral term shuts down and therefore no imaging task is needed: the
imaging result is correct by using reference velocity.

By adding together all of the leading order imaging-only terms like the above three terms in the
higher order ISS terms, the leading order imaging sub-series closed form was obtained,

αLOIS(z) = α1

(
z − 1

2

∫ z

−∞
α1(z ′)dz ′

)
. (15)

The closed form above is a shifted “attention-needed term” by a quantity of the “attention-provided
term”.

Now let us take a look at the imaging-only term for the multi-parameter acoustic medium in
equation (14). Rewrite it as the following form:

−1
2

1
cos2 θ

[
1

cos2 θ
α1(z) +

(
1− tan2 θ

)
β1(z)

] ∫ z

−∞

[
α1(z ′)− β1(z ′)

]
dz ′

The “attention-needed terms” turn out to be the combination term of the two parameters α1(z) and
β1(z) in the bracket, and the corresponding “attention-provided term” is the integral of α1(z)−β1(z)
which only takes care of the velocity change (Zhang and Weglein, 2005). If there is no velocity
change in the medium, the integral shuts down and the imaging task is not needed. The logic here

130



Imaging in a 1D multi-parameter acoustic medium MOSRP07

is following the same way as we stated in the above 1D one-parameter acoustic medium case. So,
Weglein intuitively proposed the following conjectured imaging algorithm for the 1D two-parameter
acoustic medium:

LOIS =
1

cos2 θ
α1

(
z − 1

2
1

cos2 θ

∫ z

−∞
α1(z ′)dz ′

)
+
(
1− tan2 θ

)
β1

(
z − 1

2
1

cos2 θ

∫ z

−∞
α1(z ′)dz ′

)
.

(16)

Following the same philosophy and logic of the “attention-needed terms” and the “attention-provided
term”, the above conjecture was extended by Weglein to a multi-D multi-parameter acoustic
medium and 1D/multi-D elastic multi-parameter medium, by directly substituting the original one-
parameter “attention-provided term” with the multi-parameter “attention-provided term” expressed
in the multi-parameter shifted “attention-needed term”. Jingfeng Zhang justified this conjecture
on the the 1st order and 2nd order approximations in the 1D multi-parameter elastic medium where
imaging-only terms have been identified in Zhang and Weglein (2006).

To justify the above conjectured imaging algorithm for the 1D two-parameter acoustic medium,
more imaging-only terms should be identified by calculating higher order ISS terms. Due to an
exponential increase in the complexity of calculation for higher and higher ISS terms, a good
way is to calculate as few ISS terms as possible, and identify a similar mathematical pattern in
higher order terms, then conclude an imaging sub-series/closed form from those similar terms. The
following sections are based on this idea and examine the conjectured imaging algorithm for the
two-parameter acoustic medium.

Multi-parameter imaging algorithm

This section aims to identify a multi-parameter imaging algorithm by calculating and capturing
some imaging-only terms hidden in the higher order ISS terms.

Calculation of the third order ISS term

We start with the calculation of the ISS third term, equation (9),

−G0V3G0 = G0V2G0V1G0 +G0V1G0V2G0 +G0V1G0V1G0V1G0.

where,

G0V3G0 =
∫∫ ∞

−∞
dx′dz ′G0(xg, zg;x′, z ′)V̂3(x′, z ′)G0(x′, z ′;xs, zs), (17)

G0V2G0V1G0 =
∫∫ ∞

−∞
dx′dz ′

∫∫ ∞

−∞
dx′′dz ′′G0(xg, zg;x′, z ′)V̂2(x′, z ′)G0(x′, z ′;x′′, z ′′) (18)

· V̂1(x′′, z ′′)G0(x′′, z ′′;xs, zs),
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G0V1G0V2G0 =
∫∫ ∞

−∞
dx′dz ′

∫∫ ∞

−∞
dx′′dz ′′G0(xg, zg;x′, z ′)V̂1(x′, z ′)G0(x′, z ′;x′′, z ′′) (19)

· V̂2(x′′, z ′′)G0(x′′, z ′′;xs, zs),

G0V1G0V1G0V1G0 =
∫∫ ∞

−∞
dx′dz ′

∫∫ ∞

−∞
dx′′dz ′′

∫∫ ∞

−∞
dx′′′dz ′′′G0(xg, zg;x′, z ′)V̂1(x′, z ′) (20)

· G0(x′, z ′;x′′, z ′′)V̂1(x′′, z ′′)G0(x′′, z ′′;x′′′, z ′′′)V̂1(x′′′, z ′′′)G0(x′′′, z ′′′;xs, zs).

For the 1D two-parameter acoustic medium, the perturbation defined in equation (11) becomes,

V̂n(x′, z ′) =
ω2

K0
αn(z ′) +

βn(z ′)
ρ0

∂2

∂x′2
+

1
ρ0

∂

∂z ′
βn(z ′)

∂

∂z ′
n = 1, 2, 3... (21)

and a 2D Green’s function bilinear form is used in calculation, which is defined as,

G0(x′, z ′;x′′, z ′′) =
ρ0

(2π)2

∫∫ ∞

−∞
dkx

′dkz
′ e
ikx

′(x′−x′′)eikz
′(z′−z′′)

k2 −
(
kx
′2 + kz

′2
) . (22)
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After mathematical calculation, the third term turns out to be,

1
cos2 θ

α3(z) +
(
1− tan2 θ

)
β3(z)

= − 1
cos4 θ

[α1(z)− β1(z)] [α2(z)− β2(z)] +
1
4

1
cos2 θ

β2
1(z) [α1(z)− β1(z)]

+
1
8

1
cos4 θ

β1(z) [α1(z)− β1(z)]
2 − 5

16
1

cos6 θ
[α1(z)− β1(z)]

3

− 1
2

1
cos4 θ

α1
′(z)

∫ z

−∞

[
α2(z ′)− β2(z ′)

]
dz ′

− 1
2

1
cos4 θ

α2
′(z)

∫ z

−∞

[
α1(z ′)− β1(z ′)

]
dz ′

+
1
2
(
tan4 θ − 1

)
β1
′(z)

∫ z

−∞

[
α2(z ′)− β2(z ′)

]
dz ′

+
1
2
(
tan4 θ − 1

)
β2
′(z)

∫ z

−∞

[
α1(z ′)− β1(z ′)

]
dz ′

− 1
8

1
cos6 θ

α1
′′(z)

[∫ z

−∞
(α1(z ′)− β1(z ′))dz ′

]2

− 1
8

1
cos4 θ

(
1− tan2 θ

)
β1
′′(z)

[∫ z

−∞
(α1(z ′)− β1(z ′))dz ′

]2

− 1
4

3
cos6 θ

α1(z)α1
′(z)

∫ z

−∞

[
α1(z ′)− β1(z ′)

]
dz ′

+
1
4

3
cos6 θ

β1(z)α1
′(z)

∫ z

−∞

[
α1(z ′)− β1(z ′)

]
dz ′

+
1
4

1
cos4 θ

(
3 tan2 θ + 1

)
α1(z)β1

′(z)
∫ z

−∞

[
α1(z ′)− β1(z ′)

]
dz ′

+
1
4

1
cos4 θ

(
3 tan2 θ − 1

)
β1(z)β1

′(z)
∫ z

−∞

[
α1(z ′)− β1(z ′)

]
dz ′

− 1
4

1
cos4 θ

β1
′(z)

∫ z

−∞

[
α1(z ′)− β1(z ′)

]2
dz ′

− 1
8

1
cos6 θ

[
α1

′(z)− β1
′(z)
] ∫ z

−∞

[
α1(z ′)− β1(z ′)

]2
dz ′

+MUL.

(23)

where MUL. term is the multiple-related term expressed as the following equation,
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MUL. =− 1
16

1
cos6 θ

∫ z

−∞
α1

′(z ′)
∫ z

−∞
α1

′(z ′′)α1(z ′ + z ′′ − z)dz ′′dz ′

− 1
8

(
1

cos4 θ
− 1

2
1

cos6 θ

)∫ z

−∞
α1

′(z ′)
∫ z

−∞
α1

′(z ′′)β1(z ′ + z ′′ − z)dz ′′dz ′

− 1
4

(
1

cos4 θ
− 1

2
1

cos6 θ

)∫ z

−∞
α1

′(z ′)
∫ z

−∞
β1
′(z ′′)α1(z ′ + z ′′ − z)dz ′′dz ′

− 1
4

(
2

cos2 θ
− 2

cos4 θ
+

1
2

1
cos6 θ

)∫ z

−∞
α1

′(z ′)
∫ z

−∞
β1
′(z ′′)β1(z ′ + z ′′ − z)dz ′′dz ′

− 1
4

(
1

cos2 θ
− 1

cos4 θ
+

1
4

1
cos6 θ

)∫ z

−∞
β1
′(z ′)

∫ z

−∞
β1
′(z ′′)α1(z ′ + z ′′ − z)dz ′′dz ′

+
1
4

(
3

cos2 θ
− 3

2
1

cos4 θ
+

1
4

1
cos6 θ

)∫ z

−∞
β1
′(z ′)

∫ z

−∞
β1
′(z ′′)β1(z ′ + z ′′ − z)dz ′′dz ′.

(24)

where the ′ means a derivative of the argument in that function.

Examination on the one-parameter case

Now we have already obtained the complicated mathematical expression for the 3rd ISS term. How
good is the calculation? Let us check the 3rd term result under a 1D acoustic medium with velocity
variation only at normal incidence case.

Under the above assumptions,

β1 = 0, θ = 0 (then, cos θ = 1 and tan θ = 0).

By using the above two values, we can further simplify the 3rd term,

L.H.S. = α3(z).

R.H.S. =− α1(z)α2(z)−
5
16
α1

3(z)

− 1
2
α1

′(z)
∫ z

−∞
α2(z ′)dz ′ −

1
2
α2

′(z)
∫ z

−∞
α1(z ′)dz ′

− 1
8
α1

′′(z)
[∫ z

−∞
α1(z ′)dz ′

]2

+
3
4
α1(z)α1

′(z)
∫ z

−∞

(
−α1(z ′)

)
dz ′

− 1
16

∫ z

−∞
α1

′(z ′)
∫ z

−∞
α1

′(z ′′)α1(z ′ + z ′′ − z)dz ′′dz ′.

(25)

To get the final expression of R.H.S. term, we will substitute into the above equation the expression
of α2 in Shaw et al. (2002) for the one-parameter case.

α2(z) = −1
2

[
α1

2(z) + α1
′(z)

∫ z

−∞
α1(z ′)dz ′

]
. (26)
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Substituting equation (26) back into equation (25), we find,

R.H.S. =
1
2
α1(z)

[
α1

2(z) + α1
′(z)

∫ z

−∞
α1(z ′)dz ′

]
− 5

16
α1

3(z)

+
1
4
α1

′(z)
∫ z

−∞
dz ′

[
α1

2(z ′) + α1
′(z ′)

∫ z′

−∞
α1(z ′′)dz ′′

]

+
1
4
d

dz

[
α1

2(z) + α1
′(z)

∫ z

−∞
α1(z ′)dz ′

] ∫ z

−∞
α1(z ′)dz ′ −

1
8
α1

′′(z)
[∫ z

−∞
α1(z ′)dz ′

]2

− 3
4
α1(z)α1

′(z)
∫ z

−∞
α1(z ′)dz ′ −

1
16

∫ z

−∞
α1

′(z ′)
∫ z

−∞
α1

′(z ′′)α1(z ′ + z ′′ − z)dz ′′dz ′.

(27)

After collecting the same terms and using some simple algebra, and letting the R.H.S. equal the
L.H.S., we obtain,

α3(z) =
3
16
α1

3(z) +
3
4
α1(z)

dα1(z)
dz

∫ z

−∞
α1(z ′))dz ′

+
1
8
d2α1(z)
dz2

[∫ z

−∞
α1(z ′)dz ′

]2

− 1
8
dα1(z)
dz

∫ z

−∞
α1

2(z ′)dz ′

− 1
16

∫ z

−∞
α1

′(z ′)
∫ z

−∞
α1

′(z ′′)α1(z ′ + z ′′ − z)dz ′′dz ′.

(28)

Equation (28) is exactly α3(z) for the 1D one-parameter acoustic medium at normal incidence case
in Shaw (2005), which indicates the calculation of the 3rd order term is effective.

Leading order imaging sub-series

In the following calculation, we try to further simplify some integrals in equation (23) by collecting
some similar terms and using the 2nd term result equation (14).

We consider the following two integrals in equation (23),

− 1
2

1
cos4 θ

α2
′(z)

∫ z

−∞

[
α1(z ′)− β1(z ′)

]
dz ′ +

1
2
(
tan4 θ − 1

)
β2
′(z)

∫ z

−∞

[
α1(z ′)− β1(z ′)

]
dz ′

= −1
2

1
cos2 θ

(
tan2 θ + 1

)
α2

′(z)
∫ z

−∞

[
α1(z ′)− β1(z ′)

]
+

1
2

1
cos2 θ

(
tan2 θ − 1

)
β2
′(z)

∫ z

−∞

[
α1(z ′)− β1(z ′)

]
dz ′

= −1
2

1
cos2 θ

d

dz

[
1

cos2 θ
α2(z) +

(
1− tan2 θ

)
β2(z)

] ∫ z

−∞

[
α1(z ′)− β1(z ′)

]
dz ′.

(29)

where we notice that the total derivative part outside the integral is exactly the ISS 2nd term
equation (14).
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Now substituting equation (14) into equation (29),

− 1
2

1
cos4 θ

α2
′(z)

∫ z

−∞

[
α1(z ′)− β1(z ′)

]
dz ′

+
1
2
(
tan4 θ − 1

)
β2
′(z)

∫ z

−∞

[
α1(z ′)− β1(z ′)

]
dz ′

=
3
4

1
cos4 θ

[α1(z)− β1(z)]
dD(z, θ)
dz

∫ z

−∞

[
α1(z ′)− β1(z ′)

]
dz ′

+
1
2

1
cos2 θ

β1(z)
dD(z, θ)
dz

∫ z

−∞

[
α1(z ′)− β1(z ′)

]
dz ′

− 1
2

1
cos4 θ

[α1(z)− β1(z)]
dβ1(z)
dz

∫ z

−∞

[
α1(z ′)− β1(z ′)

]
dz ′

+
1
4

1
cos4 θ

d2D(z, θ)
dz2

[∫ z

−∞
(α1(z ′)− β1(z ′))dz ′

]2

.

(30)

where we define a new quantity D(z, θ) in the above result, called the“imaging composite” and
expressed as,

D(z, θ) ≡ 1
cos2 θ

α1(z) +
(
1− tan2 θ

)
β1(z). (31)

This new quantity D(z, θ) is the linear term, equation (13), except for a constant.

Similarly, we also notice the following integrals in equation (23),

− 1
8

1
cos6 θ

α1
′′(z)

[∫ z

−∞
(α1(z ′)− β1(z ′))dz ′

]2

+
1
8

1
cos4 θ

(
tan2 θ − 1

)
β1
′′(z)

[∫ z

−∞
(α1(z ′)− β1(z ′))dz ′

]2

= −1
2

1
cos4 θ

d2D(z, θ)
dz2

[∫ z

−∞
(α1(z ′)− β1(z ′))dz ′

]2

.

(32)

and,

− 1
4

1
cos4 θ

β1
′(z)

∫ z

−∞

[
α1(z ′)− β1(z ′)

]2
dz ′

− 1
8

1
cos6 θ

[
α1

′(z)− β1
′(z)
] ∫ z

−∞

[
α1(z ′)− β1(z ′)

]2
dz ′

= − 1
cos4 θ

dD(z, θ)
dz

∫ z

−∞

[
α1(z ′)− β1(z ′)

]2
dz ′.

(33)

Substituting all of the above equations back into the equation (23) and combining similar terms,
we obtain the 3rd term in terms of the new defined imaging composite D(z, θ),
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1
cos2 θ

α3(z) +
(
1− tan2 θ

)
β3(z)

= − 1
cos4 θ

[α1(z)− β1(z)] [α2(z)− β2(z)] +
1
4

1
cos2 θ

β1
2(z) [α1(z)− β1(z)]

+
1
8

1
cos4 θ

β1(z) [α1(z)− β1(z)]
2 − 5

16
1

cos6 θ
[α1(z)− β1(z)]

3

− 1
2

1
cos2 θ

dD(z, θ)
dz

∫ z

−∞

[
α2(z ′)− β2(z ′)

]
dz ′

+
3
4

1
cos4 θ

[α1(z)− β1(z)]
dD(z, θ)
dz

∫ z

−∞

[
α1(z ′)− β1(z ′)

]
dz ′

+
1
2

1
cos2 θ

β1(z)
dD(z, θ)
dz

∫ z

−∞

[
α1(z ′)− β1(z ′)

]
dz ′

− 1
8

1
cos4 θ

dD(z, θ)
dz

∫ z

−∞

[
α1(z ′)− β1(z ′)

]2
dz ′

+
1
8

1
cos4 θ

d2D(z, θ)
dz2

[∫ z

−∞

(
α1(z ′)− β1(z ′)

)
dz ′
]2

− 1
2

1
cos4 θ

[α1(z)− β1(z)]
dβ1(z)
dz

∫ z

−∞

[
α1(z ′)− β1(z ′)

]
dz ′

+
1
4

1
cos4 θ

(
3 tan2 θ + 1

)
α1(z)

dβ1(z)
dz

∫ z

−∞

[
α1(z ′)− β1(z ′)

]
dz ′

+
1
4

1
cos4 θ

(
3 tan2 θ − 1

)
β1(z)

dβ1(z)
dz

∫ z

−∞

[
α1(z ′)− β1(z ′)

]
dz ′

− 3
4

1
cos6 θ

α1(z)
dα1(z)
dz

∫ z

−∞

[
α1(z ′)− β1(z ′)

]
dz ′

+
3
4

1
cos6 θ

β1(z)
dα1(z)
dz

∫ z

−∞

[
α1(z ′)− β1(z ′)

]
dz ′

+ MUL.

(34)

where the multiple-related term MUL. is expressed in equation (24).

The examination on the imaging-only terms shown in the 2nd order results (Zhang and Weglein,
2005) indicates that only the integral terms of the difference between the two parameters, in the 3rd

order ISS term, will contribute to the imaging algorithm. And the philosophy of collecting similar
but higher order imaging-only terms leads to the consideration of the following term in equation
(34):

1
8

1
cos4 θ

d2D(z, θ)
dz2

[∫ z

−∞

(
α1(z ′)− β1(z ′)

)
dz ′
]2

Similarly, we can rewrite equation (13) and the 2nd order imaging-only term in equation (14) in
terms of the defined imaging composite D(z, θ):

− 4
ρ0
D(z, θ) = D(z, θ). (35)
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−1
2

1
cos2 θ

dD(z, θ)
dz

∫ z

−∞

[
α1(z ′)− β1(z ′)

]
dz ′

The above three terms are imaging terms identified from the first three ISS terms that are going
to be collected and taken as the basis to identify the following imaging sub-series. An observation
through the first three imaging terms provides a mathematical pattern, called as “leading order
imaging sub-series” (LOIS ):

DLOIS =
∞∑
n=0

(
−1

2
1

cos2 θ

)n
n!

dnD(z, θ)
dzn

[∫ z

−∞

(
α1(z ′)− β1(z ′)

)
dz ′
]n
. (36)

Every term in this LOIS is an imaging-only term and appears in the higher ISS terms with
increasing n.

Leading order imaging closed form

Employing the same mathematical procedure as Shaw (2005), the LOIS is a Taylor expansion series
of the following imaging function, called as “leading order imaging closed form”:

∞∑
n=0

(
−1

2
1

cos2 θ

)n
n!

dnD(z, θ)
dzn

[∫ z

−∞

(
α1(z ′)− β1(z ′)

)
dz ′
]n

= D
(
z − 1

2
1

cos2 θ

∫ z

−∞

(
α1(z ′)− β1(z ′)

)
dz ′
)
. (37)

Noticing the quantity D defined in equation (31), the above leading order imaging closed form is
exactly the conjectured imaging algorithm proposed by Weglein in equation (16).

Discussion

Shutting down the density variation, namely, letting β(z) = 0, and therefore, β1(z) = 0, equation
(37) will be simplified as,

∞∑
n=0

(
−1

2
1

cos2 θ

)n
n!

dnα1(z)
dzn

[∫ z

−∞
α1(z ′)dz ′

]n
= α1

(
z − 1

2
1

cos2 θ

∫ z

−∞
α1(z ′)dz ′

)
. (38)

This equation is exactly the leading order imaging sub-series and closed form for the 1D velocity-only
changed acoustic medium (Shaw et al., 2002; Shaw, 2005). For the one parameter case, the imaging
algorithm recognizes the one parameter (velocity) as the imaging object, and the shifted quantity
in the α1(z) depends on the integral of the 1st order approximation of the velocity parameter to
the uncorrected location.
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Unlike the one parameter case, there are two parameters to be imaged for the acoustic medium with
both density and velocity variations. So which one should be imaged? or, should both be imaged,
in the way as the above one parameter case? The leading order imaging closed form, equation (37),
answers these questions: it recognizes the imaging of the two parameters as a imaging composite
D(z, θ). In fact, the imaging composite D(z, θ) is related with the seismic data in the pseudo-depth
domain, presenting in equation (35). Therefore, the closed form can be further identified as a
shifted seismic data set in the re-scaled time domain using reference velocity, called as pseudo-
depth domain, i.e.,

D
(
z − 1

2
1

cos2 θ

∫ z

−∞

(
α1(z ′)− β1(z ′)

)
dz ′
)

= − 4
ρ0
D

(
z − 1

2
1

cos2 θ

∫ z

−∞

(
α1(z ′)− β1(z ′)

)
dz ′
)
.

(39)

This imaging result is valuable and indicates that for multi-parameter medium imaging, the al-
gorithm itself will recognize the existence of different parameters in the medium, since reflection
happens when medium properties change, i.e. medium parameters change. The inverse scattering
imaging algorithm captures the medium property changes as a composite change, in other words, it
images the medium structure in the composite when medium property changes occur. Meanwhile,
the shifted quantity in the above imaging algorithm is expressed as the integral of the difference
between the 1st order approximations of the two parameters, which is only taking care of the ve-
locity change (Zhang and Weglein, 2005). It will be automatically shut down when there is no
velocity variation in the medium (then there is no imaging necessity). This indicates the fact that
inverse scattering theory is a purposeful perturbation theory – tasks will be ‘waken up’ only when
needed by the medium. Another surprising capability of the ISS imaging algorithm is that it will
shut down each imaging term at the first step when it knows there is no velocity change, i.e. when
α1(z)− β1(z) = 0, and hence each imaging term related with the integral of the difference will be
dead to zero immediately. This indicates the ISS is an instantly responsive series.

Conclusion

In this report, a leading order imaging algorithm has been derived for a 1D acoustic two-parameter
medium, which justifies the logic of the imaging conjectures proposed by Weglein in 2007. The
derived imaging algorithm can be expressed as a shifted seismic data set. The shifted quantity
is an integral of the difference between the two first order approximations of the two parameters
in the medium, which is integrated to zero when there is no velocity variation in the medium.
The examination and justification of the logic developed by Weglein in his imaging conjectures by
deriving the leading order imaging algorithm in this report presents a framework to develop the
ultimate ISS model-type independent imaging algorithm step by step. The logic steps are: For a
specific model, find the “attention-needed term” which linearly relates with the measured seismic
data set, then the “attention-needed term” provides the multi-parameter imaging composite which
is migrated with an ISS reference velocity and will be shifted in the final imaging algorithm with
a quantity of the “attention-provided term”–an integral of the difference among the first order
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approximations of the multi-parameters in that medium, which only takes care of the velocity
variation of that medium. The imaging algorithm developed here and the conjectured imaging
algorithms extended to multi-D and multi-parameter acoustic/elastic media are a structure mapping
(using phase information to image the medium structure where reflectors reside), not suited for
subsequent AVO analysis because the amplitudes are not correct in the imaging algorithms.

To implement the imaging algorithm (39), the research and related numerical tests are carrying
on within M-ORSP. The imaging algorithm developed in this report will also be extended to the
multi-D multi-parameter acoustic/elastic media using the logic described in this report and related
numerical tests will be planned.
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Preparing data with finite cross-line aperture for input to 3D non-linear
imaging algorithms

Z. Wang, A. B. Weglein and F. Liu

Abstract

Seismic imaging methods input measurements on the earth’s surface to make inference about
subsurface reflectors’ locations. When a source generates a wave into a medium, the wave is
ubiquitous, including to all points on the measurement surface. Wave theoretic propagation and
imaging methods require measurements on the measurement surface where wave theory predicts
it will arrive, i.e., everywhere on the measurement surface. When data collection is limited
by economic and/or practical considerations, a compromise to wave theory using asymptotic
analysis can be used to image limited data with a compromised theory.
In this note, we assume data is adequately sampled in the in-line direction but has a serious
aperture limitation in the cross-line direction. Our objective is to provide a wave theory imaging
in the direction that has adequate collecion and asymptotic migration in the cross-line limited
aperture direction. This is deriving an imaging algorithm that will allow the near-future an-
ticipated less than full cross-line coverage and adequate in-line acquistion to be input into the
velocity independent inverse scattering imaging algorithm pioneered by Liu et al. (2007).

1 Introduction

The inverse scattering series, a multidimensional direct inversion method, has been used to derive
candidate direct nonlinear imaging algorithms that do not require the actual propagation velocity.
Weglein et al. (2001) isolated an imaging sub-series out from the whole inverse scattering seires.
Shaw et al. (2004) and Shaw and Weglein (2004) successfully isolated the leading order imaging
subseries (LOIS) in the laterally invariant acoustic medium and presented its closed form, which
makes the series truncation unnecessary. Liu et al. (2005) and Liu et al. (2007) extended it with
the higher order imaging subseries (HOIS) in the laterally variant 2D and 3D acoustic medium.
All of the algorithms above are functions of α1, which derives directly from the collected data. So
calculating α1 from the data D is a prerequisite step for the use of the algorithms.

Currently, data collection is often adequate in the in-line direction but has a serious aperture
limitation in the cross-line direction, because of economic and/or practical considerations. So the
wave theoretic algorithm stated in Liu et al. (2007), which requires full data collection in both
directions, does not suit this case well. In Stolt and Benson (1986) Chapter 3, they developed a
method to do 2.5D finite-aperture migration. We will extend their method to 3D.

In this note, first, we use the inverse scattering theory to review the derivation of α1 in a 3D
constant-density acoustic medium. Then an algorithm that can fully use the data to calculate
α1, which is a wave theory imaging in the direction that has adequate collecion and asymptotic
migration in the cross-line limited aperture direction, is provided. This prepares data with sparse
cross-line sampling and aperture for input to the velocity independent inverse scattering imaging
algorithm provided in Liu et al. (2007).
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2 α1 in a 3D constant-density acoustic medium

For a 3D constant-density acoustic medium, the wave equations for the actual and reference wave-
field are expressed by:

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+

ω2

c2(x, y, z)
)G(xg, yg, zg, xs, ys, zs, ω) = δ(x− xs)δ(y − ys)δ(z − zs), (1)

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+

ω2

c20(x, y, z)
)G0(xg, yg, zg, xs, ys, zs, ω) = δ(x− xs)δ(y − ys)δ(z − zs). (2)

The scattered wavefield is defined by the difference between the total wavefield and the direct
arrival wavefield:

D(xg, yg, zg, xs, ys, zs, ω) = G(xg, yg, zg, xs, ys, zs, ω)−G0(xg, yg, zg, xs, ys, zs, ω). (3)

If the reference medium is chosen to be an acoustic wholespace with constant velocity c0, then the
scattering potential is:

V (x, y, z) =
ω2

c20
− ω2

c2(x, y, z)
=
ω2

c20
α(x, y, z), (4)

where

α(x, y, z) = 1− c20
c2(x, y, z)

. (5)

As shown by Weglein et al. (2003), the scattering potential can be expressed in orders of the
scattered wavefield. At first order, the relationship is:

D(xg, yg, zg, xs, ys, zs, ω) =
∫ ∞

−∞
dx1

∫ ∞

−∞
dy1

∫ ∞

−∞
dz1G0(xg, yg, zg, x1, y1, z1, ω)

V1(x1, y1, z1)G0(x1, y1, z1, xs, ys, zs, ω), (6)

where V1 is the linear approximation of V, i.e. the first order in measurements of the scattered
wavefield,

V1(x, y, z) =
ω2

c20
α1(x, y, z), (7)

and α1(x, y, z) is the first order of α(x, y, z) in terms of the data D. Fourier transforming on
xg, yg, xs and ys:

1
(2π)4

∫ ∞

−∞
dxg

∫ ∞

−∞
dyg

∫ ∞

−∞
dxs

∫ ∞

−∞
dys e

iksxxs+iksyys−ikgxxg−ikgyyg ,

we get:

D(kgx, kgy, ksx, ksy, ω)

=
∫ ∞

−∞
dx1

∫ ∞

−∞
dy1

∫ ∞

−∞
dz1G(kgx, kgy, zg, x1, y1, z1, ω)

ω2

c20
α1(x1, y1, z1)G(x1, y1, z1, ksx, ksy, zs, ω)
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=
∫ ∞

−∞
dx1

∫ ∞

−∞
dy1

∫ ∞

−∞
dz1

1
(2π)2

e−i(kgyy1+kgxx1)eikgz |zg−z1|

2ikgz
ω2

c20
α1(x1, y1, z1)

1
(2π)2

ei(ksyy1+ksxx1)eiksz |z1−zs|

2iksz

=− 1
2π

ω2

4kgzkszc20
α1(kgx − ksx, kgy − ksy, kgz + ksz). (8)

Here we have chosen zg = zs = 0. Or equivalently,

α1(kmx, kmy, qz) = −2π
4kgzkszc20

ω2
D(kgx, kgy, ksx, ksy, ω). (9)

The quantities kmx, kmy, qz used here, and khx, khy, to be used later, are defined as follows:

kmx = kgx − ksx, khx = kgx + ksx,

kmy = kgy − ksy, khy = kgy + ksy, qz = kgz + ksz.

Equation (9) is an exact, simple relationship between α1 and the data. If we have enough data,
we can inverse Fourier transform it back to the space domain, which is done in Liu et al. (2007).
In this note, we assume that data is adequately sampled in the in-line direction but has a serious
aperture limitation in the cross-line direction. So we can not do the inverse Fourier transform in
the cross-line direction. Next we will provide a possible route around this problem, involving an
asymtotic approximation developed in Stolt and Benson (1986) Chapter 3.

3 Stationary phase approximation in cross-line direction

In equation (9), there are three variables on the left hand side of the equation but there are five
variables on the right hand side, which means that there are two extra degrees of freedom (in the 2D
case there is one). We will use the extra degree of freedom in the cross-line domain to compensate
for the change of the integration range in this direction from infinite to a finite aperture. Also,
Liu et al. (2006) has demonstrated that, although the extra degree of freedom will influence the
imaging result of αn (n = 1, 2, ..), it affects the closed form little when we use the HOIS. This is
consistent with the fact that α represents the real medium and doesn’t depend on what method
we use, as long as our result is exact. So for simplicity, we can eliminate the other extra degree of
freedom by fixing one variable.

Suppose the y direction is the cross-line direction. We can eliminate the extra degree of freedom
in the x direction by fixing

khx = 0 ⇒ kgx = −ksx = 0.5kmx.

Then

D(0.5kmx, kgy,−0.5kmx, ksy, ω) = − 1
2π

ω2

4kgzkszc20
α1(kmx, kmy, qz). (10)

In the following, we will follow the finite-aperture migration method stated in Stolt and Benson
(1986) Chapter 3 in y − z domain. Because we are considering the 3D case and kmx is on both
sides of equation (10), some small changes to the formulas are made.
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In general, the inversion will be such that α1 is estimated as a linear combination of the data D:

α1(kmx, kmy, qz) =
∫ +∞

−∞
dkhyL(kmx, kmy, khy, qz)D(0.5kmx, kgy,−0.5kmx, ksy, ω). (11)

Using equations (10) and (11) together, we can see that L must be an arbitrary normalized function
that satisfies:

1 = −
∫ +∞

−∞
dkhyL(kmx, kmy, khy, qz)

1
2π

ω2/c20
4kgzksz

. (12)

One can choose many different forms for L, and this flexibility makes the compensation for the
limited cross-line aperture possible. Fourier transforming from the kmy, qz domain to the y, z
domain:

α1(kmx, y, z) =
∫ +∞

−∞
dkmy

∫ +∞

−∞
dqz

∫ +∞

−∞
dkhye

i(kmyy−qzz)L(kmx, kmy, khy, qz)

1
(2π)2

∫ +∞

−∞
dyg

∫ +∞

−∞
dyse

i(ksyys−kgyyg)D(0.5kmx, yg,−0.5kmx, ys, ω).

(13)

Changing the integration variables from (kmy, khy, qz) to (kgy, ksy, ω), and the order of integration,

dkmydkhydqz = dkgydksydw 2wqz/(c2kgzksz), (14)

α1(kmx, y, z) =
∫ +∞

−∞
dyg

∫ +∞

−∞
dys

∫ +∞

−∞
dw I(kmx, y, z|yg, ys, ω)D(0.5kmx, yg,−0.5kmx, ys, ω),

(15)
where

I =
1

2π2

∫ +∞

−∞
dkgye

ihg

∫ +∞

−∞
dksye

ihs
ωqz

c2kgzksz
L(kmx, kmy, khy, qz). (16)

The phase factors hg and hs are defined as follows:

hg = −[kgy(yg − y) + kgzz], hs = −[ksy(y − ys) + kszz].

By assuming that the weighting function L is slowly varying compared to the phase factors, we can
approximate the integration by using the method of stationary phase. At the stationary points of
the two integrals, kgy = k̂gy and ksy = k̂sy,

dhg
dkg

|kg=k̂g
= 0 and

dhs
dks

|ks=k̂s
= 0.

So the stationary points are:

k̂gy =
k′(yg − y)

rg
, k̂sy =

k′(y − ys)
rs

, (17)
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Figure 1: Relationship between k = ω
c and k′

where

rg =
√
z2 + (yg − y)2, rs =

√
z2 + (y − ys)2, k′ =

√
(
ω

c
)2 − (0.5kmx)2.

They are the projections of distances and frequency onto the y-z plane (as shown in Figure 1),
while in Stolt and Benson (1986) they are the total distances and frequency. This is because here
we leave the x domain unchanged and consider the problem in the y-z plane. So the total distances
and frequency here should be the projection of distances and frequency onto the y-z plane. For
depth wavenumbers kgz and ksz

k̂gz =
k′z

rg
, k̂sz =

k′z

rs
, q̂z =

k′z

rg
+
k′z

rs
= k′

zr

rgrs
, (18)

where r = rg + rs. It is interesting to note that:

tan θg =
k̂gy

k̂gz
=
yg − y

z
, and tan θs =

k̂sy

k̂sz
=
y − ys
z

,

which means that, in the y− z plane, the directions of wave vectors are the same as the connecting
lines between the start points and the end points. So the wave propagation in the y − z plane can
be explained by using ray theory. In the rg − x plane or the rs − x plane, the wave vectors kx and
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k′, which are the Fourier conjugates of x and rg or rs, are continuous. The propagations act as a
2D propagating wave, and can be explained by using wavefield theory. These wave propagations
are illustrated in Figure 2. Because the amplitudes of k̂gy, k̂sy, k̂gz, and k̂sz depend on the value of
kmx, they are coupled together.
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Figure 2: Illustration of the wave propagation.

Continuing with the approximation:

ĥg = −k′rg, ĥs = −k′rs. (19)

The second derivatives at the stationary point are:

ĥ′′g =
r3g
z2k′

, ĥ′′s =
r3s
z2k′

. (20)

Midpoint and offset frequencies become:

k̂my = k′(
yg − y

rg
− y − ys

rs
), k̂hy = k′(

yg − y

rg
+
y − ys
rs

). (21)

Making the stationary point approximation:

I =
1

2π2

2iπ√
ĥ′′g ĥ

′′
s

ei(ĥg+ĥs) ωk̂z

c2k̂gzk̂sz
L(kmx, k̂my, k̂hy, q̂z)

=
iw

πc2
e−ik

′(rg+rs) zr

(rgrs)
3
2

L(kmx, k̂my, k̂hy, q̂z), (22)

where the frequencies k′, k̂my, and k̂hy are all functions of ω, kmx and other space variables. In
order to separate the frequency variables ω and kmx from the space variables, we can restrict L to
be of the form:

L(kmx, k̂my, k̂hy, q̂z) = S(β, γ)F (kmx, ω), (23)
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where
β = k̂my/q̂z and γ = k̂hy/q̂z. (24)

So equation (15) becomes:

α1(kmx, y, z) =
∫ +∞

−∞
dyg

∫ +∞

−∞
dys

∫ +∞

−∞
dw I(kmx, y, z|yg, ys, ω)D(0.5kmx, yg,−0.5kmx, ys, ω)

=
2z
c

∫ +∞

−∞
dyg

∫ +∞

−∞
dys

r

(rgrs)
3
2

S(β, γ)PF , (25)

where PF is a frequency-filtered version of the data:

PF =
1
2π

∫ +∞

−∞
dwe−ik

′(rg+rs) iw

c
F (kmx, ω)D(0.5kmx, yg,−0.5kmx, ys, ω). (26)

As stated above, we don’t have sufficient data. We must control the offset in the cross-line direction.
This control can be achieved by adding a “boxcar” function to S:

S(β, γ) = B(h1, h2; yh)T (β, γ). (27)

Here B(h1, h2; yh) is the Boxcar function:

B(h1, h2; yh) =


1 if yg − ys = yh ∈ (h1, h2)

0 otherwise.
(28)

Applying all of these limitations to the restriction function (12),

1 = −
∫ +∞

−∞
dkhyF (kmx, ω)B(h1, h2; yh)T (β, γ)

1
2π

ω2/c20

q2z(1−
k̂2

my k̂
2
hy

q4z
)
. (29)

About qz, it satisfies:

qz =
2k′√

(1 + β2)(1 + γ2)
. (30)

So the restriction is:

−2π =
ω2

c20

F (kmx, ω)
2k′

∫ γ2

γ1

dγT (β, γ)

√
(1 + β2)(1 + γ2)

1− β2γ2
. (31)

For simplicity, we choose (as Wang (1990))

F (kmx, ω) = − 4πk′

ω2/c20
. (32)

T (β, γ) =
1− β2γ2

(1 + β2)(1 + γ2)
1

γ2 − γ1
. (33)
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So

α1(kmx, y, z) =
2z
c

∫ +∞

−∞
dyg

∫ +∞

−∞
dys

r

(rgrs)
3
2

S(β, γ)PF

=
2z
c

∫ +∞

−∞
dys

∫ ys+h2

ys+h1

dyg
r

(rgrs)
3
2

1− β2γ2

(1 + β2)(1 + γ2)
1

γ2 − γ1
PF .

(34)

Transforming kmx back to space domain, we obtain the inversion result for the first term α1:

α1(x, y, z) =
2z
c

∫ +∞

−∞
eikmxxdkmx

∫ +∞

−∞
dys

∫ ys+h2

ys+h1

dyg
r

(rgrs)
3
2

1− β2γ2

(1 + β2)(1 + γ2)
1

γ2 − γ1
PF ,

(35)

where

PF =
1
2π

∫ +∞

−∞
dw e−ik

′(rg+rs) iw

c0
F (kmx, ω)D(0.5kmx, yg,−0.5kmx, ys, ω)

= − 1
2π

∫ +∞

−∞
dw e−ik

′(rg+rs) 4πik
′

ω/c0
D(0.5kmx, yg,−0.5kmx, ys, ω).

(36)

We can see that Equation (35) represents a wave propagation the in in-line direction and a finite-
aperture integration in the cross-line direction. All of the collected data is used.

Substituting the result into the leading order or higher order closed form in Liu et al. (2007):

αLOIS(~x, z) = α1

(
~x, z − 1

2

∫ z

−∞
α1(~x, u)du

)
, (37)

αHOIS

(
~x, z +

1
2

∫ z

−∞
du

α1(~x, u)
cos2 θx + cos2 θx − 1

4α1(~x, u)

)
= α1(~x, z), (38)

we can get the imaging result. Note that, in equation (38), θx = 0, because we have made the
assumption that khx = 0.

4 Summary

In this paper, according to the assumption that the data is adequately sampled in in-line direction
but has a serious aperture limitation in cross-line direction, which is often the case, we used an
finite-aperture algorithm which utilizes wave theoretic method in in-line direction and asymptotic
method in cross-line limited aperture direction to calculate α1. This algorithm is compromised
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because we don’t collect data over all of the measurement surface. The algorithm does imaging
using all of the collected data. Then the velocity independent inverse scattering imaging algorithm
in Liu et al. (2007) can be carried out.

The work is not yet complete. We will continue to extend the result without fixing khx = 0, in order
to use it in other more complicated models than the constant-density acoustic medium. Another
aspect we are going to focus on is using numercial tests to evaluate the quality of this approximation
and improve it.
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What are α1 and α2?

J. D. Mayhan, D. W. Fisher, X. Li, J. E. Lira, and Z. Wang

Abstract

The first author, a first year graduate student in M-OSRP, describes the research he plans to
begin this summer. The research is aimed at improving our understanding of the roles of α1 and
α2 in the Inverse Scattering Series. α1 and α2 are the linear and quadratic terms, respectively,
in the expansion of α, the perturbation in the index of refraction, in orders of the measured
data.

Background

Where does the first author fit into the “big picture”?

Interpreting a seismic experiment can be done using the Inverse Scattering Series (ISS), which
is broken down into task-specific subseries, one of which is the imaging subseries (“migration”).
Ongoing research in M-OSRP on the imaging subseries is being conducted by F. Liu, S. Jiang, Z.
Wang, and J. D. Mayhan1. S. A. Shaw (2005) imaged 1D variable velocity acoustic media, F. Liu
(2006) extended imaging to 2D variable velocity acoustic media, and Z. Wang and the first author
plan to extend imaging to 3D variable velocity acoustic media. To begin his work, the first author
will critically examine the roles of α1 and α2 in F. Liu’s imaging results.

What is the ISS?

Recall that the starting point for the ISS is the Lippmann-Schwinger equation (an operator identity)
(Weglein et al., 2003):

G = G0 +G0V G, (1)

where G is the Green’s function (impulse response) in the medium of interest, G0 is the Green’s
function in the reference medium, and V = L − L0 is the perturbation operator, the difference
between the differential operators governing wavefield propagation through the medium of interest
(L) and the reference medium (L0). The Lippmann-Schwinger equation is solved via (i) iteration:

G−G0 = G0V G0 +G0V G0V G0 + . . . , (2)

(ii) expanding V in orders of the measured data:

V = V1 + V2 + V3 + . . . , (3)
1Liu, Wang, and Mayhan are pronounced Lou, Wong, and May-hand, respectively.
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(iii) substituting equation (3) into equation (2), and (iv) collecting equal orders in the data. The
result is a set of equations which can be sequentially solved for Vn (n = 1, 2, 3,. . .) using only
measured data D and the reference medium G+

0 where the “+” indicates use of a causal Green’s
function:

(G+
0 V1G

+
0 )m = D, (4)

(G+
0 V2G

+
0 )m = −(G+

0 V1G
+
0 V1G

+
0 )m, (5)

(G+
0 V3G

+
0 )m = −(G+

0 V1G
+
0 V2G

+
0 )m − (G+

0 V2G
+
0 V1G

+
0 )m − (G+

0 V1G
+
0 V1G

+
0 V1G

+
0 )m, (6)

and so forth. In equation (4) D (= G−G0) is the recorded wavefield at the measurement surface
m.

Collecting equal orders in the data is justified because orders/powers of the measured data are
linearly independent. Hence the expansion can equal zero only if each order equals zero. For
example, if a0 + a1x+ a2x

2 = 0 for all x, then a0 = a1 = a2 = 0.

In variable velocity acoustic media, the perturbation V = (ω2/c20)α
2 is characterized by the per-

turbation α in the index of refraction:

1
c2(~r)

=
1
c20

(1− α(~r)), (7)

where c(~r) = the wave velocity in the medium of interest, c0 = the wave velocity in the reference
medium, and α (like V ) is expanded in orders of the measured data:

α = α1 + α2 + α3 + . . . , (8)

i.e., αn is nth order in the data required to solve for α. For example, in his thesis F. Liu derived
α2 and α3 for a 2D variable velocity acoustic medium.

Future Plan

The first author’s initial research will build on F. Liu’s thesis (Liu, 2006) and has the following
goals:

Better understand α1.

Recall that α is the perturbation in the index of refraction, and α1 is the linear term in the expansion
of α in orders of the measured data.

In traditional imaging methods, the source of challenge is the complexity inherent in determining
the actual velocity. In contrast, the ISS neither requires nor explicitly determines actual velocity.
The ISS begins the process of imaging by generating reference velocity images with fidelity (i.e.,
the ISS ”expects the wrong thing to be done right”). The ISS then interrogates the resulting
images in a non-linear fashion using derivatives and integrals of α1. “Non-linear” means the data
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comprising each image is multiplied by itself up to several orders, and pairs, triples, etc. of data
are compared. As a result of this non-linear data interrogation, the images are migrated from their
reference velocity positions closer to their actual positions.

Higher order terms in the ISS are expressed using derivatives and integrals of α1, therefore it is
important that we better understand α1, e.g., its properties, what it does, what each of its various
derivatives do, what ∂α1/∂z can handle, when ∂α1/∂x kicks in, etc.

The first author will define imaging challenges and their corresponding responses by studying the
simplest incarnation of each issue. Given a medium configuration, when an ISS term ”lights up”
signals its purpose. For example, F. Liu imaged several synthetic models in his thesis, including
a complex salt model provided by ExxonMobil (Fig. 1 in the Appendix). The first author plans
to track the numeric values of α1 and ∂α1/∂z as they cross reflectors. This technique may enable
understanding of precisely what happens when the integral relating α1 and data (equation (13)
in the Appendix) crosses a reflector. What happens when the integral crosses a boundary helps
define what higher order terms are looking at. For example, F. Liu has shown the first author how
to move the cursor over the ”soft copy” versions of the above images and simultaneously view the
numeric values of α1 and ∂α1/∂z underlying the images. It is hoped that such detailed study of
the images will shed some light on the detailed behavior of α1 and ∂α1/∂z as functions of medium
geometry/physical properties.

Suppose we have an inclined boundary separating two homogeneous media. If we evaluate
∫
dz ∂α1(x,z)

∂x
along a vertical line that crosses the inclined boundary, the integral may be non-zero only at the
intersection because α1(x, z) would have non-zero lateral variation only when it crosses the inclined
boundary. The first author will try to use these kinds of analysis to develop templates which
indicate which physical configurations in the medium cause which terms in the ISS to ”light up”.

Better understand α2,3.

Recall that α2 is the quadratic term in the expansion of α in orders of the measured data. F. Liu’s
derivation of α2 for a 2D variable v acoustic medium resulted in three components: α2,1, α2,2, and
α2,3. The first subscript indicates order in the data required to solve for α (in this case 2), and the
second subscript indicates how fast the term grows with kz, the Fourier conjugate of depth z. The
expression for α2,1 contains two terms:

α2,1(x, z) = −1
2
α2

1(x, z)−
1
2
∂α1(x, z)

∂z

∫ z

−∞
duα1(x, u). (9)

α2
1 acts to correct the amplitude of α1 towards α, and the product of ∂α1/∂z and

∫
duα1 acts to

shift the mislocated reflector in α1 towards its correct location (where the shift takes place in depth
z). The expression for α2,2 contains one term:

α2,2(x, z) =
1
2
∂α1(x, z)

∂x

∫ z

−∞
du

∫ u

−∞
dv

∂α1(x, v)
∂x

. (10)
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The product of ∂α1/∂x and
∫
du
∫
dv ∂α1/∂x acts to shift the mislocated reflector in α1 towards

its correct location (where the shift is lateral in x). The expression for α2,3 is much more complex
than α2,1 and α2,2, even though it contains only one term:

α̃2,3(km, z) =
1

8π2

∫ ∞

−∞
dk1

∫ ∞

−∞
dz1 α̃1(0.5km − k1, z1)

∫ z1

−∞
dz2 α̃1(0.5km + k1, z2)

ξ̃2(km, k1, 0.5(z1 + z2)− z, 0.5(z1 − z2)),
(11)

where

ξ̃2(km, k1, ε0, ε1) =
∫ ∞

−∞
dkz exp (i(ε1 + ε0)kz)(

i

u1
(k2
z + k2

m) exp (i∆Ψ)− ikz +
1
2
ε1a1), (12)

a1 = k2
m − 4k2

1,

u1 = sgn(kz)
√
k2
z + a1,

∆Ψ = ε1(u1 − kz).

k1 is the Fourier conjugate of x1, where x1 is the lateral coordinate of the first V1 in equation (5),
and kz is the Fourier conjugate of depth z. z1 is the depth coordinate of the first V1 in equation (5),
z2 is the depth coordinate of the second V1 in equation (5), and a tilde over a variable indicates
a Fourier transformed variable. As a first step in interpreting α2,3, the first author has derived
what may be a simpler form of α2,3 that combines its forms in the space-time and double Fourier
domains.

Recalling that the goal is to interpret α2,1, α2,2, and α2,3 (i.e., what physics are they expressing?),
can one tell from looking at α1 and its different derivatives what α2,1, α2,2, and α2,3 are doing?
What specifically is being addressed in a 2D earth by α2,2 and α2,3 that’s not being captured by
α2,1? In addition, tieing α2,3 back to scattering diagrams (which encode the physics) may shed
some light on its physical interpretation.

F. Liu’s image of the ExxonMobil model using α1 (Fig. 2 in the Appendix) shows diffraction below
the ends of the salt (the false shadows). Diffraction exists in 2D and 3D, not in 1D, and α2,2 and
α2,3 have no 1D analogue. Is this a clue that α2,2 and α2,3 touch diffraction? Imaging a flat reflector
can be done with α1, but imaging a rugose surface probably requires α2,2 and α2,3 (terms with no
1D analogue) because incident and reflected rays may traverse both media (above and below the
surface) due to the surface’s roughness.

Wrap Up

When the first author worked for a major oil, gas, and petrochemical company, one executive began
meetings with the question, “why are we wasting our time and the shareholders’ money by having
this meeting?” It is hoped that this note has convinced M-OSRP’s sponsors that the first author’s
research will waste neither the sponsors’ time nor their shareholders’ money.
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Appendix: Referenced equations and figures from F. Liu’s thesis

F. Liu’s integral relating α1 and measured data is:

˜̃α1(km, kz) =
−4qgqs
(ω2/c20)

∫ ∞

−∞
dxm exp (−ikmxm)

∫ ∞

−∞
dτ exp (iωτ)Dτp(xm, τ) (13)

Dτp(xm, τ) =
∫ ∞

−∞
dxhD(xm + 0.5xh, xm − 0.5xh, τ + xh sin θ/c0)

where c0 = the wave velocity in the reference medium,
Dτp(xm, τ) = the linear Radon transform of all traces within a common mid-point gather,
kg = the Fourier conjugate of the x-coordinate of the receiver,
km = kg − ks = the Fourier conjugate of the x-coordinate of the mid-point,
ks = the Fourier conjugate of the x-coordinate of the source,
kz = the Fourier conjugate of depth z,
ω = the Fourier conjugate of time t,
p = sin θ/c0 = the horizontal slowness,
qg = sgn(ω)

√
(ω/c0)2 − k2

g ,

qs = sgn(ω)
√

(ω/c0)2 − k2
s ,

τ = t− xh sin θ/c0 = a time-like integration variable,
θ = angle of incidence of the plane wave,
xh = xg − xs = x-coordinate of the offset,
and xm = 0.5(xg + xs) = x-coordinate of the mid-point.
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Figure 1: The geometry and velocity of each layer in the salt model.

157



What are α1 and α2? MOSRP07

Figure 2: Linear imaging results for the salt model.
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Conservation of cumulative reflection coefficients

F. Liu and A. B. Weglein

Abstract

This article presents a simplified relationship after grouping the amplitude of seismic events with
similar propagation history: for layered acoustic medium, the cumulative reflection coefficient
(i.e., the total amplitude of the events that had never propagated through a target), depends
only on the acoustic property below the target and the first layer, and does not depend on
any other overburden property of the middle layers above the target. One significance of the
cumulative reflection coefficient is its direct impact on direct non-linear imaging: if it is utilized
by the current higher-order siesmic imaging algorithm (Liu, 2006, equation 2.33 and 2.34 ), we
can achieve accurate depth for all the reflectors with a constant, unchanged migration velocity.
This observation has the potential to become a procedure for the full seismic imaging subseries
proposed in Weglein et al. (2003). Similar approach, i.e., removing the overburden effects on
primaries with the help of the internal multiples, had already been studied in Lira et al. (2006).

1 Introduction

As defined in Weglein et al. (2003), an event in the seismic data is a distinct arrival of wave
energy. Seismic data consists of many kinds of events with very different types of history from their
creation at the source to their measurement at the receiver. Primaries are events that experienced
one upward reflection (Figure 1 (a) and (b)), whereas multiply reflected events or multiples have
experienced more than one upward reflection (see Figure 1 (c), (d), and (e)).

Even for very simple idealized layered models, every event carries information about its propagation
history: the acoustic properties of the layers it had propagated through. This article presents a
neat conservation relationship stating the opposite: after grouping the complicated information in
events with similar propagation history, the final result “forget” their propagation history.

To be more specific, for a layered medium containing N + 1 layers, each layer consists of acoustic
medium with velocity cn (n = 0, 1, · · · , N), its cumulative reflection coefficient (denoted as
RN−1), defined as “the total amplitude of all the events that never penetrate cN−1/cN interface”, is
RN−1 = cN−c0

cN+c0
. If we consider the last reflector (the cN−1/cN reflector) as the target, its cumulative

reflection coefficient does not depend on the overburden information c1, · · · , cN−1, it only depends
on the velocity of the first layer c0, and the velocity below the target cN .

One interesting observation is that, if the amplitude of the n’th primaries is modefied to the
difference between the cumulative reflection coefficients of two adjacent layers: Rn − Rn−1, our
current higher-order imaging series achieves the accurate depth of all reflectors using a constant,
unchanged migration velocity. This modification, although not an automatic procedure in the
current stage, provides us with valuable insights to go beyond our current higher-order imaging
subseries and reach the goal of the full seismic imaging subseries.
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Figure 1: The earliest five events from the model defined in equation (1): (a) Primary from the first
reflector; (b) primary from the second reflector; (c) first-order internal multiple; (d) second-order
internal multiple; (e) third-order internal multiple.

2 Theory

For simplicity, we restrict our discussion to layered model without laterial variation, with piecewise-
constant velocity function depending only on depth (z),

c(z) =


c0 z < d0

c1 d0 ≤ z < d1

c2 d1 ≤ z
. (1)

There are two reflectors in this model: (1) the reflector associated with the c0/c1 interface, according
to Weglein et al. (2003), its reflection coefficient is r0 = c1−c0

c1+c0
; (2) the reflector associated with the

c1/c2 interface, its reflection coefficient is r1 = c2−c1
c2+c1

. In Figure 1, a plane-wave normal incidence
experiment and the propagation history of its earliest events are illustrated (for display purpose,
the propagation is shown with a slope, since if strictly shown with up or down propagation, the
propagation pathes overlap with each other, and we cannot tell how the wave propagates).

From Weglein et al. (2003), it’s easy to deduce that the nth-order internal multiple is (−1)n(1 −
r20)r

n
0 r

n+1
1 , where n = 1, 2, 3, · · · . The amplitude of nth-order transmission event is (−1)n−1(1 +

r0)(1 + r1)(r0r1)n−1.

The reflection data recorded at z = 0 include the primaries and the nth-order internal multiple
(n = 1, 2, 3, · · · ), the sum of their amplitude (denoted as R1) is:

R1 = r0 +
∞∑
n=0

(−1)n
(
1− r20

)
r1 (r0r1)

n

= r0 +
(1− r20)r1
1 + r0r1

=
r0 + r1
1 + r0r1

.

(2)

160



Conservation of cumulative reflection coefficients MOSRP07

Figure 2: Events with their amplitudes labeled. We focused on the black colored events. The upward
black events are reflection data (from left to right): (1) primary from the first reflector; (2)
primary from the second reflector; (3) the 1st-order internal multiple from the second reflector;
(4) the 2nd-order internal multiple from the second reflector; · · · . Those upward events will never
come back. The downward black events are transmission events (from left to right): (1) the 1st

transmission event; (2) the 2nd transmission event; (3) the 3rd transmission event, · · · . Like the
upward events mentioned before, those downward events will never return.

On the other hand, the total transmission strength (i.e., the sum of the amplitude of all transmission
events, denoted as T1) is,

T1 =
∞∑
n=0

(−1)n(1 + r0)(1 + r1) (r0r1)
n

=
(1 + r0)(1 + r1)

1 + r0r1
=

1 + r0r1 + r0 + r1
1 + r0r1

= 1 +
r0 + r1
1 + r0r1

= 1 + R1 .

(3)

What is significant about R1 in equation (2)? It turns out to be the reflection coefficient for a
single reflector with c0 above, and c2 below, as if the middle layer with velocity c1 does not exist.
The presence of the medium in between (with velocity c1) can be removed by a simple summing.
This can be shown in the equation below,

R1 =
r0 + r1
1 + r0r1

=
c1−c0
c1+c0

+ c2−c1
c2+c1

1 + c1−c0
c1+c0

c2−c1
c2+c1

=
c2 − c0
c2 + c0

. (4)

Similarly, T1 is the transmission coefficient of the same effective medium (with reflection coefficient
R1) since T1 = 1 + R1.
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Let’s consider a layered medium consisting of n reflectors, with depth-varying velocity function
below,

c(z) =


c0 z < d0

cn dn ≤ z < dn+1 (n = 1, 2, · · · , N).
cN+1 dN+1 ≤ z

(5)

The model defined in equation (1) can be considered as a special case of the model defined in
equation (5) where N = 1. For a much simpler 2-reflector model where N = 1, and for the 1-
reflector model where N = 0. The following propositions are true: Proposition I, the up-going
reflection events recorded in the medium c0 can be expressed as a set of events with cumulative
amplitude of RN = cN+1−c0

cN+1+c0
; Proposition II, the transmission events recorded in the medium

cN+1 can be expressed as a set of events with cumulative amplitude TN = 1 + RN .

In the induction proof, we assume the two propositions are true for N = 1, 2, · · · , n−1. We consider
a model with N = n − 1 (it will be refered to as modeln−1, We now add another velocity layer
cn+1, and consequently we have a model for N = n, see Fig. (3). Lets assume a single wave packet
ψ(t) incident from medium c0, as indicated by the solid black arrow at the upper-left corner of
Fig. (3). According to our inductive proposation, modeln−1 will produce two groups of events: (1)
the up-going group U (0) with cumulative amplitude cn−c0

cn+c0
(it will be denoted as Rn−1); and (2) the

down-going group A(0) with cumulative amplitude 1 + Rn−1.

Let’s define the cumulative amplitude of a group of events, denote as A, its argument is a set of
events of the form {A(i)ψ(t− ti) : i = 0, 1, 2, · · · } 1, and defined as,

A({Aiψ(t− ti) : i = 0, 1, 2, · · · }) =
∞∑
i=0

Ai . (6)

Please notice that, in the definition A, only Ai (the amplitude term of each event) is effective, ti
(the phase or the lag time of each event) is totally irrelavent.

A({Ai : i = 0, 1, 2, · · · }) =
∞∑
i=0

Ai . (7)

An event in the group A(0), propagates down first, and then will reflect back and transmit through
the cn/cn+1 interface, whose reflection coefficient is denoted as rn = cn+1−cn

cn+1+cn
. If we assume the

amplitude of this event is S, it will produce an up-going reflection event with amplitude Srn, and
a down-going transmission event with amplitude S(1 + rn). Consequently, the group A(0) will
produce a group of reflection events denoted by B(0), and a group of transmission events denoted

1For a plane-wave normal incident upon a layered medium, seismic data recorded in a fixed location consist of
many events, each event share the same temporary variation as the incident wave-packet ψ(t) with an additional
amplitude Ai and phase term ti.
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by D(0). It is obvious that the cumulative amplitude of the events in group B(0) is rnRn−1, and
the cumulative amplitude of the events in group D(0) is (1 + rn)Rn−1,

A(B(0)) = rnRn−1 A(D(0)) = (1 + rn)Rn−1 .

The events in group D(0) will never return, and can be ignored for further discussion. Only the
events in group B(0) are still inside the model.

Any event in the group B(0), which propagates upward towards the down side of modeln−1, will
propagate toward a model which is the reversal of modeln−1, i.e., a model with first layer velocity
cn, the second layer velocity cn−1, the third layer velocity cn−2, · · · , and the last layer velocity c0;
let’s denote it by modelreversaln−1 .

Since modelreversaln−1 is a model with N = n − 1, from our inductive assumptions, it has a cu-
mulative reflection coefficient determined by its first layer velocity cn, and last layer velocity c0:
c0−cn
c0+cn

= − cn−c0
cn+c0

= −Rn−1, and cumulative transmission coefficient 1 + (−Rn−1) = 1 − Rn−1. As
a result, an event in B(0), denoted as e1, will produce a group of transmission events (denoted as
G1) propagating into c0 and will never return, and a group of reflection events (denoted as H1)
propagating back into cn. Another event in B(0), denoted as e2, will produce a different group of
transmission events G2 and a different group of reflection events H2. Since modelreversaln−1 is a model
with N = n − 1, according to our inductive assumptions, it is obvious the cumulative amplitude
of G1 is proportional to the amplitude of e1, the cumulative amplitude of G2 is proportional to
the amplitude of e2, with the same proportional factor 1 − Rn−1; the cumulative amplitude of
H1 is proportional to the amplitude of e1, the cumulative amplitude of H2 is proportional to the
amplitude of e2, with the same proportional factor −Rn−1,

A(G1) = (1− Rn−1)A(e1) A(G2) = (1− Rn−1)A(e2),
A(H1) = (−Rn−1)A(e1) A(H2) = (−Rn−1)A(e2).

In Fig. (3), G1 and G2 are two sub-groups of the event group U (1), H1 and H2 are two sub-groups
of the event group A(1). The cumulative amplitude of group U (1) is rn(1− Rn−1)2 since,

A(U (1)) =
∞∑
i=0

A(Gi) = (1− Rn−1)
∞∑
i=0

A(ei)

= (1− Rn−1)A(B(0)) = (1− Rn−1)rn(1 + Rn−1)

= rn(1− R2
n−1).

A(A(1)) =
∞∑
i=0

A(Hi) = (−Rn−1)
∞∑
i=0

A(ei)

= (−Rn−1)A(B(0)) = −rnRn−1(1 + Rn−1).
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Figure 3: A model with one more reflector constructed by introducing another velocity cn+1

U (k) A(k)

k = 0 Rn−1 1 + Rn−1

k = 1 rn(1− R2
n−1) (1 + Rn−1)(−rnRn−1)

k = 2 rn(1− R2
n−1)(−rnRn−1) (1 + Rn−1)(−rnRn−1)

2i

B(k) D(k)

k = 0 rn(1 + Rn−1) (1 + rn)(1 + Rn−1)

k = 1 rn(1 + Rn−1)(−rnRn−1) (1 + rn)(1 + Rn−1)(−rnRn−1)

k = 2 rn(1 + Rn−1)(−rnRn−1)
2 (1 + rn)(1 + Rn−1)(−rnRn−1)

2

Since the events in group U (1) propagate into c0 and will never return, they can be ignored for
further discussion. The only group of events we should consider is A(1). We can repeat the previous
analysis to obtain the reflection events and transmission events produced by the group A(0) and
the previous arguments follows exactly the same manner. In summary, the cumulative amplitude
of each group of events are listed in the table below.

The reflection data recorded at z = 0 include the following group, U (0), U (1), U (2), · · · , the sum of
their amplitude is:

Rn = Rn−1 +
∞∑
k=0

(−1)k
(
1− R2

n−1

)
rn (Rn−1rn)

k

= Rn−1 +
(1− R2

n−1)rn
1 + Rn−1rn

=
Rn−1 + rn
1 + Rn−1rn

.

(8)

On the other hand, the total transmission strength (i.e., the sum of the amplitude of D(0), D(1),
D(2), · · · ) is,
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Tn =
∞∑
k=0

(−1)k(1 + Rn−1)(1 + rn) (Rn−1rn)
k

=
(1 + Rn−1)(1 + rn)

1 + Rn−1rn
=

1 + Rn−1rn + Rn−1 + rn
1 + Rn−1rn

= 1 +
Rn−1 + rn
1 + Rn−1rn

= 1 + Rn.

(9)

What is special about Rn in equation (8)? It turns out to be the reflection coefficient for a single
reflector with c0 above, and cn+1 below, as if the middle layers with velocity c1, c2, · · · , cn do not
exist. The presence of those layers can be removed by a simple summing. This can be shown in
the equation below,

Rn =
Rn−1 + rn
1 + Rn−1rn

=
cn−c0
cn+c0

+ cn+1−cn
cn+1+cn

1 + cn−c0
cn+c0

cn+1−cn
cn+1+cn

=
cn+1 − c0
cn+1 + c0

. (10)

Similarly, Tn is the transmission coefficient of the same effective medium (with reflection coefficient
Rn) since Tn = 1 + Rn.

From equation (8) and equation (9), the claims in our two propositions about the cumulative
amplitude are true also for the next N value N = n. Then it is clear that Proposation I and
Proposation II are true for 1D acoustic models with any number of layers. The simplification
stated in the introduction of this article is simply Proposation I.

A layered model, for example, the one defined in equation (5), will produce many events. We
further define Ωn as the set of events that had been reflected by, but no transmitted through, the
N +1th reflector. It can be equivalently defined as the group of events with deepest reflection point
at the N + 1th reflector. Several observations can be reached immediately,

1. From the definition, the union
N⋃
n=0

Ωn contains all the events reflected from the model.

2. The sets in the union are mutually exclusive. For example, if m < n ≤ N , it is easy to verify
that any event in Ωn does not belong to Ωm; and any event in Ωm does not belong to Ωn.

3. A partial union of the form
M⋃
n=0

Ωn (where M ≤ N) consists of all the events from the simpler

model with M reflectors. The cumulative amplitude of the reflection data from this model,

according to our proposition, is A(
M⋃
n=0

Ωn) = cM+1−c0
cM+1+c0

.

4. Each Ωn contains only one primary, i.e., the primary from the nth reflector. The other events
are multiples.
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5. The cumulative amplitude of each Ωn is: A(Ω0) = c1−c0
c1+c0

, A(Ωn) = cn+1−c0
cn+1+c0

− cn−c0
cn+c0

, n =
1, 2, · · · , N .

6. For 1D acoustic medium with density variation, our previous argument is also valid if velocity
is replaced by impedance (the product of velocity and density). In this case, although the
reflection and transmission coefficients are determined by impedance contrast, instead of
velocity contrast, the equations determining the cummulative reflection and transmission
strength are the same if impedance is used instead of velocity.

3 Numerical example

For 1D layered acoustic model, the amplitude of each event can be analytically obtained, allowing
the numerical example (see Figure 4) below to be designed and tested in the frame-work of this
article.

This example shows that, after the removal of multiples, and adding the amplitude of all the internal
multiples to the primary that reflects from the same deepest reflection location as the multiples,
then our current higher-order imaging subseries (Liu, 2006) achieved accurate depth for all the
primaries.

4 Conclusions

A simplication had been reached after grouping seismic events with similar propagation history.
This simplification provides us with additional insight about how to fully realize the depth-imaging
potential of the inverse scattering series that achieves accurate depth with a constant, unchanged
reference medium. To be more specific,

1. The current higher-order seismic imaging subseries, although very effective and robust for
large contrast geological models, is still not the full seismic imaging seubseries. The first
interesting fact is that, if we modify the amplitude of each primary to the difference between
two adjacent cumulative reflection coefficients, the current higher-order imaging subseries will
indeed achieve accurate depth for all reflectors, as demonstrated by a numerical example in
section 3.

2. The second interesting fact is that: almost all the overburden information was cleared from
cumulative reflection coefficients.

3. The third interesting fact is that, the relationship in this article hold not only for velocity-
only acoustic mdeium, but also for acoustic medium with velocity and density variations.
An procedure, capable of reaching cumulative reflection coefficient for velocity-only acoustic
medium, will be equally effective to remove the overburden effect for acoustic medium with
velocity and density variation. It will certainly give better chance for parameter inversion.

Further research is needed to obtain a procedure to realize the concept in this article.
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Figure 4: (a): A geological model with four reflectors. (b): The input data (displayed in red) includes
primaries and the corresponding higher-order imaging result (displayed in yellow). (c): in red is
the input data that each primary’s amplitudes changed to the total amplitude of group of events
with deepest reflection point at that primary’s reflection depth, in yellow is the corresponding
higher-order imaging result. It is clear that with the modification in (c), the current higher-order
imaging subseries achieved accurate depth for all reflectors.
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Note on multi-component elastic direct nonlinear target identification

X. Li, H. Zhang and A. B. Weglein

Abstract

In this note, firstly, we will review the prior research on multi-component elastic direct nonlinear
inversion (Zhang, 2006). Based on the inverse scattering task-specific subseries (Weglein et al.,
2003), a multi-component direct nonlinear inversion framework for 1D two parameter (velocity
and density variation with depth) acoustic case was developed and extended to 1D three param-
eter (P-wave velocity, S-wave velocity, and density variation with depth) elastic case. Because
it is a direct non-linear method, we can solve for the medium properties explicitly and directly
without global searching, and this procedure has the potential to give more accurate and reliable
estimation of earth property changes for small and large contrast targets.

Zhang provided the direct non-linear inversion formulas for medium properties for the sim-
plest 1D elastic earth using line sources and receivers. The unambiguous message was that a full
set of multicomponent data, DPP , DPS , DSP and DSS (Zhang and Weglein, 2005) was needed
to achieve the objective. Although synthetic tests using only DPP have been done and which
provided consistent value-added results, never the less DPP is intrinsically inadequate.

Secondly, in order to better understand the derivation and the algorithm for the elastic
case in Zhang’s thesis, we examine some specific calculations involving the operator 1

∇2 .
1
∇2

appears in the perturbation V̂ when we transform from the displacement domain to the P and
S potential (PS) domain (Weglein and Stolt, 1992; Matson, 1997; Zhang and Weglein, 2005).
Ambiguity occurs when 1

∇2 acts on different Green’s functions in the nonlinear term. In this
note, we confirm Zhang’s elastic derivation and results from a different point of view and present
a further explanation on this issue.

H. Zhang (2006) studied the important and standard marine towed streamer case where
only DPP is available.The required DPS , DSP , and DSS data is approximately synthesized
using DPP . The non-linear results with this towed streamer data demonstrated added-value
in comparison with linear results for a suite of tests for each of several different target types.
There were cases where the goal was to distinguish between two target regimes with very close
change in elastic properties and density, and different underlying rock fluid and pressure char-
acteristics. We plan to test the actual rather than approximate synthesized data components,
and to compare that called for data with linear and non-linear synthesized data.

Introduction

Seismic data processing is an inverse method during which measured data are inverted for Earth
properties. The inverse scattering series promises to produce a direct non-linear inversion procedure
in terms of only recorded data and reference information (Weglein et al., 2003). Scattering theory
relates the perturbation (the difference between the reference and actual medium properties) to
the scattered wave field (the difference between reference and actual wave field). It recognizes that
when you perturb anything in a medium the associated perturbation in the wavefield is always
non-linearly related to that change.

169



Note on multi-component elastic direct nonlinear target identification MOSRP07

Research has been done to seek isolated convergent subseries which perform individual tasks (We-
glein et al., 2003): 1. Free surface multiple removal; 2. Internal multiple removal; 3. Imaging
(positioning reflectors at the correct spacial locations), and 4. Target Identification (inverting
reflectivity for changes in Earth parameters). The order in which these steps are carried out is
very important because the algorithms assume that the data have been processed by the previous
steps. On her way to the direct non-linear inversion solution, Zhang, assumed that the unperturbed
medium is a homogeneous wholespace; the free surface multiples and internal multiples have al-
ready been removed. When reduced to the special case of a single horizontal reflector, the exact
location of the reflector and the reference medium down to the reflector are known, and the goal is
to determine the medium properties below the reflector which have a nonlinear relationship with
the recorded data.

Current parameter inversion methods 1. assume a linear relationship between the amplitude of a
primary and the mechanical property change across the reflector, which can be violated in practice
and result in erroneous predictions; or 2. assume a nonlinear relationship but use an indirect
model-matching method to seek the solution, which often has a significant computation effort and
also has reported ambiguous results. The direct multi-parameter non-linear inversion is direct and
non-linear without making a small contrast assumption. The directness and explicitness of the ISS
provides not only the precise framework but also a much greater clarity, for the meaning of ”linear
in the data”, and precisely what data collection will be required to achieve classic processing goals,
for example, in a 2D problem, it needs to solve for a 2 × 2 matrix V, from a 2 × 2 matrix data,
DPP , DPS , DSP and DSS , where previously only anecdotal experience provided a hint.

Research has proceeded in stages: We started by analyzing a one parameter (only velocity varying
in depth) 1D acoustic constant density medium and 1D normal incidence (Weglein et al., 2002;
Shaw et al., 2004). Zhang examined the two parameter (velocity and density varying in depth)
1D acoustic case and extended to three parameter (P-wave velocity, S-wave velocity, and density
varying in depth) 1D elastic case (Zhang, 2006) which is a further important stage towards realism
for target identification. Zhang has demonstrated, for the first time, 1. an explicit and direct
set of equations for improving upon linear estimates of the changes in those elastic properties; 2.
the absolutely clear data requirements: all four components of data, D̂PP , D̂PS , D̂SP and D̂SP

(Zhang and Weglein, 2005) are needed for determining the three parameters: aρ, relative change in
density; aγ , relative change in bulk modulus; aµ, relative change in shear modulus. If started using
only DPP to solve for linear estimates of changes in medium properties and obtain every form
of generalized inverse by minimizing the objective function, people would never realize that the
whole framework is intrinsically inadequate. Although, mathematically, solving three independent
equations for three unknowns sounds pretty reasonable, it does not represent the correct linear
relationship of the changes in the medium properties in terms of the data that can determine the
quantities. This problem is only pointed by the direct nonlinear solution only provided by ISS.

The following section is a brief review about the multi-parameter direct non-linear inversion for
1D elastic medium. We then provide a further discussion about the calculation of the non-linear
terms.
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Research Review

In this section, a review of multi-component direct nonlinear inversion for 1D elastic medium
(Zhang, 2006) is presented. The direct method shows how the message of explicit data requirements
for direct nonlinear parameter estimation was delivered by inverse scattering series.

The inverse scattering series, in the PS domain (Weglein and Stolt, 1992; Matson, 1997) is

V̂ = V̂1 + V̂2 + V̂3 + ..., (1)

and
D̂ = Ĝ0V̂1Ĝ0, (2)

Ĝ0V̂2Ĝ0 = −Ĝ0V̂1Ĝ0V̂1Ĝ0, (3)

where the perturbation is given by V̂ =
(
V̂ PP V̂ PS

V̂ SP V̂ SS

)
, the Green’s operator by Ĝ0 =

(
ĜP 0
0 ĜS

)
,

and the data by D̂ =
(
D̂PP D̂PS

D̂SP D̂SS

)
.

Linear inversion of 1D elastic medium

Equation (2) leads to four equations:

D̂PP = ĜP0 V̂
PP
1 ĜP0 , (4)

D̂PS = ĜP0 V̂
PS
1 ĜS0 , (5)

D̂SP = ĜS0 V̂
SP
1 ĜP0 , (6)

D̂SS = ĜS0 V̂
SS
1 ĜS0 . (7)

These equations describe how V̂ PP
1 relates to D̂PP , V̂ PS

1 relates to D̂PS , and so on. For example,
in equation (4), an incoming P-wave interacts with V̂1 and leaves as a P-wave; and in equation (6),
an incoming P-wave interacts with V̂1 but leaves as a S-wave, and so forth.

Take D̂PP = ĜP0 V̂
PP
1 ĜP0 , as an example, in the (ks, zs; kg, zg;ω) domain, assuming zs = zg = 0, we

have:

D̃PP (kg, 0;−kg, 0;w) = −1
4
(1− kg

2

νg2
)ã(1)
ρ (−2νg)−

1
4
(1+

kg
2

νg2
)ã(1)
γ (−2νg)+

2kg2β0
2

(νg2 + kg
2)α0

2
ã(1)
µ (−2νg),

(8)
where k2

g + ν2
g = ω2

α2
0
. And there are three other equations for D̃PS , D̃SP and D̃SS (Appendix A).

We can see that, even for the linear case, the solutions are much more complicated than those for
the acoustic case.
For the P-wave incidence case, using k2

g/ν
2
g = tan2 θ and k2

g/(ν
2
g + k2

g) = sin2 θ, where θ is the
P-wave incident angle (Appendix B), equation (8) becomes

D̃PP (νg, θ) = −1
4
(1− tan θ2)ã(1)

ρ (−2νg)−
1
4
(1 + tan θ2)ã(1)

γ (−2νg) +
2sin θ2β0

2

α0
2

ã(1)
µ (−2νg). (9)
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Non-linear inversion of 1D elastic medium for 2D experiment

We next write equation (3) in matrix form:(
ĜP 0
0 ĜS

)(
V̂ PP

2 V̂ PS
2

V̂ SP
2 V̂ SS

2

)(
ĜP 0
0 ĜS

)
= −

(
ĜP 0
0 ĜS

)(
V̂ PP

1 V̂ PS
1

V̂ SP
1 V̂ SS

1

)(
ĜP 0
0 ĜS

)(
V̂ PP

1 V̂ PS
1

V̂ SP
1 V̂ SS

1

)(
ĜP 0
0 ĜS

)
, (10)

which leads to four equations:

ĜP0 V̂
PP
2 ĜP0 = −ĜP0 V̂ PP

1 ĜP0 V̂
PP
1 ĜP0 − ĜP0 V̂

PS
1 ĜS0 V̂

SP
1 ĜP0 , (11)

ĜP0 V̂
PS
2 ĜS0 = −ĜP0 V̂ PP

1 ĜP0 V̂
PS
1 ĜS0 − ĜP0 V̂

PS
1 ĜS0 V̂

SS
1 ĜS0 , (12)

ĜS0 V̂
SP
2 ĜP0 = −ĜS0 V̂ SP

1 ĜP0 V̂
PP
1 ĜP0 − ĜS0 V̂

SS
1 ĜS0 V̂

SP
1 ĜP0 , (13)

ĜS0 V̂
SS
2 ĜS0 = −ĜS0 V̂ SP

1 ĜP0 V̂
PS
1 ĜS0 − ĜS0 V̂

SS
1 ĜS0 V̂

SS
1 ĜS0 . (14)

Here we have already encountered one advantage of direct inversion: it determines data require-
ments for parameter estimation. Since V̂ PP

1 relates to D̂PP , V̂ PS
1 relates to D̂PS , and so on, the

four components of the data will be coupled for the non-linear elastic inversion. We cannot perform
the direct non-linear inversion without knowing all components of the data. In comparing with the
previous work on the two parameter acoustic case, we point out that this elastic extension is not
just adding another parameter, but involves more issues. For example, four different sets of linear
parameter estimates are produced from each component of the data. Also, generally four distinct
reflector mislocations arise from the two reference velocities (P-wave velocity and S-wave velocity).

The three parameters we are seeking to determine, aρ, aγ and aµ are to be expanded as a series in
the data which is needed to determine those three quantities. The required data are

D =
(
D̂PP D̂PS

D̂SP D̂SS

)
,

for a 2D earth and a 3× 3 matrix for a 3D earth with SH and SV shear waves.
The 2D message is delivered in equation (10), equation (11)-(14) which are the first non-linear
contribution to aρ, aγ , aµ requires that data; and, hence the exact determination of those elastic
quantities also require that data.(

V PP V PS

V SP V SS

)
=
(
V PP

1 V PS
1

V SP
1 V SS

1

)
+
(
V PP

2 V PS
2

V SP
2 V SS

2

)
+ · · ·

In some cases like the towed streamer case, all components of data are unavailable. A particular non-
linear approach – using only D̂PP has been chosen to address our typical lack of four components
of elastic data. Synthetic tests are encouraging and show significant improvement by adding the
second term (the first nonlinear term) (Zhang and Weglein, 2006) to the linear term. However,
inverting only D̂PP for the linear term of the properties aρ(1), aγ(1), and aµ(1) is basically an injured
linear estimate. It has the inherent deficiency in the very beginning – inverting the insufficient data
DPP for the linear term of medium properties. The ISS and task specific subseries need to treat
the linear term as the linear term and then let the higher order terms carry out their purpose.
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The operator 1
∇2 acting on G0

1
∇2 appears in the perturbation V̂ when transforming from the displacement domain to the PS
domain (Weglein and Stolt, 1992; Matson, 1997; Zhang and Weglein, 2005). The notation 1

∇2 is
the inverse of the differential operator ∇2. Therefore, it is an integral operator. In the nonlinear
term, for example Ĝ0V̂ Ĝ0V̂ Ĝ0, the source and receiver side Green’s functions are different from
the middle Green’s function because of the relative positions of scattering points. Ambiguity will
occur when V̂ acts on different Green’s functions. In this section we will present mathematic details
about some calculations involving the operator 1

∇2 , so as to better understand the derivation and
algorithm for the elastic case in Zhang’s thesis.

Considering the term: ĜP0
1
∇2 Ĝ

P
0

1
∇2 Ĝ

P
0 , and number this (∗). Let us see what happens when we

evaluate it. Firstly, we give the bilinear form of the Green’s function Ĝ0
P

in 2D. Starting with the
wave equation, the reference operator, L0, satisfies

L0G0 = (∇′2 +
ω2

c20
)G0(x′, z′, x′′, z′′;ω) = −δ(x′ − x′′)δ(z′ − z′′). (15)

Fourier transforming (15) with respect to x′ and z′, we find

[k2 − k′x
2 − k′z

2]G0(k′x, k
′
z, x

′′, z′′;ω) = −e−ik′xx′′e−ik′zz′′ , (16)

where k2 = ω2

c20
, thus,

G0(x′, z′;x′′, z′′;ω) = − 1
(2π)2

e−ik
′
xx

′′
∫∫

dk′xdk
′
z

eik
′
z(z′−z′′)

k2 − k′x
2 − k′z

2 . (17)

Since the sources and receivers are always above the non-reference medium, for the outside Green’s
function we have

G0(kx, z;xs, zs;ω) =
e−ikxxs

2iq
eiq(z−zs),

(q =
√
k2 − k2

x) where there are no absolute value bars; likewise, for the middle Green’s function

G0(k′x, z
′;x′′, z′′;ω) =

e−ik
′
xx

′′

2iq
eiq|z

′−z′′|,

the relative locations of the two scattering points could change, so the absolute value bars remain.

Writing equation (∗) in integral form, and calling the result I, we have

I = 1
(2π)6

∫∫∫∫
dx′dx′′dz′dz′′

∫∫
dk′xdk

′
z
eik′x(xg−x′)eik′z(zg−z′)

k2−k′x2−k′z2

× 1
∇′2

∫∫
dk′′xdk

′′
z
eik′′x(x′−x′′)eik′′z (z′−z′′)

k2−k′′x2−k′′z 2

× 1
∇′′2

∫∫
dk′′′x dk

′′′
z
eik′′′x (x′′−xs)eik′′′z (z′′−zs)

k2−k′′′x
2−k′′′z

2 .

(18)
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Fourier transforming over xs and xg, multiplying by 1
(2π)2

∫∫
dxgdxse

−ikgxgeiksxs on both sides, then

integrating over k′x and k′′′x , and calling the result Ĩ , we have

Ĩ = 1
(2π)6

∫∫∫∫
dx′dx′′dz′dz′′e−ikgx′

∫
dk′z

eik′z(zg−z′)

ν2
g−k′z2

1
∇′2

×
∫∫
dk′′xdk

′′
z
eik′′x(x′−x′′)eik′′z (z′−z′′)

k2−k′′x2−k′′z 2
1

∇′′2 e
iksx′′

∫
dk′′′z

eik′′′z (z′′−zs)

ν2
s−k′′′z

2 .
(19)

Integrating over k′z and k′′′z ,

Ĩ = 1
(2π)6

∫∫∫∫
dx′dx′′dz′dz′′e−ikgx′(−iπ) e

iνg(z′−zg)

νg

1
∇′2

×
∫∫
dk′′xdk

′′
z
eik′′x(x′−x′′)eik′′z (z′−z′′)

k2−k′′x2−k′′z 2
1

∇′′2 e
iksx′′(−iπ) e

iνs(z′′−zs)

νs
,

(20)

where ν2
g = k2 − k2

g and ν2
s = k2 − k2

s . For the outside G0 term, we have

∇′′2eiksx′′ e
iνs(z′′−zs)

νs
= (−k2

s − ν2
s )e

iksx′′ e
iνs(z′′−zs)

νs
,

so,
1
∇′′2 e

iksx′′ e
iνs(z′′−zs)

νs
=

1
(−k2

s − ν2
s )
eiksx′′ e

iνs(z′′−zs)

νs
. (21)

Hence after integrating over x′′, then over k′′x and k′′z in equation (20), we have

Ĩ = 2π4i 1
2π6

∫∫∫
dx′dz′dz′′e−ikgx′ e

iνg(z′−zg)

νg

1
∇′2

× eiksx′eiνs|z′−z′′|

νs

1
(−k2

s−ν2
s )
eiνs(z′′−zs)

νs
.

(22)

For the middle Green’s function term, we note that

∇′2 eiksx′

νs
eiνs|z′−z′′| = −k2

s
eiksx′

νs
eiνs|z′−z′′| + ∂′2z [eiνs(z′−z′′)H(z′ − z′′) + eiνs(z′′−z′)H(z′′ − z′)] e

iksx′

νs

= −k2
s
eiksx′

νs
eiνs|z′−z′′| + ∂′z[iνse

iνs(z′−z′′)H(z′ − z′′)− iνse
iνs(z′′−z′)H(z′′ − z′)] e

iksx′

νs

= (−k2
s − ν2

s + 2iνsδ(z′ − z′′)) e
iksx′

νs
eiνs|z′−z′′|.

(23)
A δ function appears in the mathematics, which prevents us from doing what we did in equation
(21). Zhang used a trick when dealing with this issue by exchanging the order of the integration
and the 1

∇′2 acting on the middle G0 (Zhang, 2006).
But what will happen if we change the order of calculation for the outer G0? Will we produce the
same result as in equation (21) which kept the original order?

Going back to equation (19), we put 1
∇′′2 inside

∫
dk′′′z , resulting in

Ĩ ′ = 1
(2π)6

∫∫∫∫
dx′dx′′dz′dz′′e−ikgx′

∫
dk′z

eik′z(zg−z′)

ν2
g−k′z2

1
∇′2

×
∫∫
dk′′xdk

′′
z
eik′′x(x′−x′′)eik′′z (z′−z′′)

k2−k′′x2−k′′z 2

∫
dk′′′z

1
∇′′2 e

iksx′′ e
ik′′′z (z′′−zs)

ν2
s−k′′′z

2

= 1
(2π)6

∫∫∫∫
dx′dx′′dz′dz′′e−ikgx′

∫
dk′z

eik′z(zg−z′)

ν2
g−k′z2

1
∇′2

×
∫∫
dk′′xdk

′′
z
eik′′x(x′−x′′)eik′′z (z′−z′′)

k2−k′′x2−k′′z 2 eiksx′′
∫
dk′′′z

eik′′′z (z′′−zs)

(−k2
s−k′′′z

2)(ν2
s−k′′′z

2)
.

(24)
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For the last term, in the complex plane

I ′ =
∫
dk′′′z

eik
′′′
z (z′′−zs)

(−k2
s − k′′′z

2)(ν2
s − k′′′z

2)
,

= lim
ε→0

∫
dk′′′z

eik
′′′
z (z′′−zs)

(k2
s + k′′′z

2)[k′′′z
2 − (νs + iε)2]

,

for νs > 0, ks > 0 and z′′ > zs. Computing the residues

Resf(k′′′z = νs + iε) =
ei(νs+iε)(z′′−zs)

[(νs + iε)2 + k2
s ][2(νs + iε)]

,

Resf(k′′′z = iks) =
ei(iks)(z′′−zs)

2iks[−k2
s − (νs + iε)2]

,

we have,
I ′ = lim

ε→0

∫
dk′′′z

eik′′′z (z′′−zs)

(k2
s+k′′′z

2)[k′′′z
2−(νs+iε)2]

= 2πi lim
ε→0+

[Resf(k′′′z = νs + iε) +Resf(k′′′z = iks)]

= −πi
−k2

s−ν2
s
[ e

iνs(z′′−zs)

νs
− e−ks(z′′−zs)

iks
].

Substituting the above results into equation (24) and integrating over k′z, x
′′, k′′x and k′′z we finally

have
Ĩ ′ = 2π4i 1

2π6

∫∫∫
dx′dz′dz′′e−ikgx′ e

iνg(z′−zg)

νg

1
∇′2

× eiksx′eiνs|z′−z′′|

νs
eiksx′ −πi

−k2
s−ν2

s
[ e

iνs(z′′−zs)

νs
− e−ks(z′′−zs)

iks
].

(25)

Comparing equation (22) with equation (25), we see that changing the order of integration has
produced different results for the outer G0. Then, which way should 1

∇2 act on a Green’s function?
To answer this, we must further examine the operator 1

∇2 . It is the inverse operator of ∇2, an
integral operator. We think of Poisson’s equation in 2D:

∇2ϕ(x, z) = ρ(x, z), (26)

applying 1
∇2 on both sides of the Poisson’s equation, we have

1
∇2

· ∇2ϕ(x, z) = ϕ(x, z) =
1
∇2

ρ(x, z). (27)

That is to say, if we are looking for 1
∇2 ρ(x, z), we can solve the Poisson’s equation for ϕ(x, z). And

the Green’s function for Poisson’s equation satisfies:

∇2G0(x, z;x′, z′) = δ(x− x′)δ(z − z′). (28)

Fourier transforming over x and z,

(−k2
x − k2

z)G̃0(kx, kz;x′, z′) = e−ikxx′e−ikzz′ , (29)
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and the Green’s function for Poisson’s equation is

G0(x, z;x′, z′) =
1

(2π)2

∫∫
dkxdkz

eikx(x−x′)eikz(z−z′)

−k2
x − k2

z

, (30)

so,

1
∇2

ρ(x, z) = ϕ(x, z) =
∫∫

dx′dz′G0(x, z;x′, z′)ρ(x′, z′)

=
1

(2π)2

∫∫∫∫
dx′dz′dkxdkz

eikx(x−x′)eikz(z−z′)

−k2
x − k2

z

ρ(x′, z′). (31)

This is an explicit expression of 1
∇2 acting on ρ. We next apply this to the outer Green’s function

in equation (21), resulting in

1
∇′′2 e

iksx′′ e
iνs(z′′−zs)

νs
,

which is equivalent to solving the following equation

∇′′2ϕ(x′′, z′′, zs) = eiksx′′ e
iνs(z′′−zs)

νs
, (32)

and,

ϕ(x′′, z′′, zs) =
1

(2π)2

∫∫∫∫
dx′dz′dk′′xdk

′′
z

eik
′′
x(x′′−x′)eik

′′
z (z′′−z′)

−k′′x2 − k′′z
2 eiksx′ e

iνs(z′−zs)

νs
. (33)

Integrating over x′ and then k′′x, we have

ϕ(x′′, z′′, zs) =
1
2π

∫∫
dz′dk′′z

eik
′′
z (z′′−z′)

−ks2 − k′′z
2

eiνs(z′−zs)

νs
eiksx′′ . (34)

Integrating over z′ and then k′′z , we finally have

1
∇′′2 e

iksx′′ e
iνs(z′′−zs)

νs
= ϕ(x′′, z′′, zs)

=
1

−ks2 − νs2
eiksx′′ e

iνs(z′′−zs)

νs
, (35)

which is consistent with what we have in equation (21).
We now deal with the middle Green’s function term, in equation (22). We have

1
∇′2

eiksx′eiνs|z′−z′′|

νs
.

According to the previous explanation, this is equivalent to solving the equation

∇′2ϕ(x′, z′, z′′) =
eiksx′eiνs|z′−z′′|

νs
. (36)

176



Note on multi-component elastic direct nonlinear target identification MOSRP07

For the purpose of integration, renaming the variable z′′ as z0,

ϕ(x′, z′, z0) =
1

(2π)2

∫∫∫∫
dx′′dz′′dk′xdk

′
z

eik
′
x(x′−x′′)eik

′
z(z′−z′′)

−k′x2 − k′z
2

eiksx′′eiνs|z′′−z0|

νs
. (37)

Integrating over x′′ and then k′x,

ϕ(x′, z′, z0) =
1
2π

∫∫
dz′′dk′z

eik
′
z(z′−z′′)

−k2
s − k′z

2

eiksx′eiνs|z′′−z0|

νs
, (38)

and integrating over k′z using residue theorem,

ϕ(x′, z′, z0) = −i
∫
dz′′

e−ks|z′−z′′|eiνs|z′′−z0|

2iksνs
eiksx′

= − e
iksx′

2ksνs

∫
dz′′e−ks|z′−z′′|eiνs|z′′−z0|

= − e
iksx′

2ksνs

∫
dz′′[e−ks(z′−z′′)H(z′ − z′′) + e−ks(z′′−z′)H(z′′ − z′)]

×[eiνs(z′′−z0)H(z′′ − z0) + eiνs(z0−z′′)H(z0 − z′′)]

= − e
iksx′

2ksνs
[e−ksz′−iνsz0

∫
dz′′e(ks+iνs)z′′H(z′ − z′′)H(z′′ − z0)

+e−ksz′+iνsz0

∫
dz′′e(ks−iνs)z′′H(z′ − z′′)H(z0 − z′′)

+eksz′−iνsz0

∫
dz′′e(−ks+iνs)z′′H(z′′ − z′)H(z′′ − z0)

+eksz′+iνsz0

∫
dz′′e(−ks−iνs)z′′H(z′′ − z′)H(z0 − z′′)]. (39)

We calculate the four terms separately without the coefficient, for the first term, calling which I1,
z′ > z′′ > z0,

I1 = e−ksz′−iνsz0

∫ z′

z0

dz′′e(ks+iνs)z′′

= e−ksz′−iνsz0 e
ksz′+iνsz′ − eksz0+iνsz0

ks + iνs

=
1

ks + iνs
[eiνs(z′−z0) − e−ks(z′−z0)], (40)

since z′ > z0, we can write

I1 =
1

ks + iνs
[eiνs(z′−z0) − e−ks(z′−z0)]H(z′ − z0).

For the fourth term, calling which I4, z0 > z′′ > z′,

I4 = eksz′+iνsz0

∫ z0

z′
dz′′e(−ks−iνs)z′′
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= eksz′+iνsz0 e
−ksz0−iνsz0 − e−ksz′−iνsz′

−ks − iνs

=
1

ks + iνs
[eiνs(z0−z′) − e−ks(z0−z′)], (41)

since z0 > z′, we can write

I4 =
1

ks + iνs
[eiνs(z0−z′) − e−ks(z0−z′)]H(z0 − z′).

Then,

I1 + I4 =
1

ks + iνs
[eiνs|z′−z0| − e−ks|z′−z0|]. (42)

Next, we calculate the second term (I2)and the third term (I3) together

I2 + I3 = H(z′ − z0)[e−ksz′+iνsz0

∫ z0

−∞
dz′′e(ks−iνs)z′′ + eksz′−iνsz0

∫ ∞

z′
dz′′e(−ks+iνs)z′′ ]

+H(z0 − z′)[e−ksz′+iνsz0

∫ z′

−∞
dz′′e(ks−iνs)z′′ + eksz′−iνsz0

∫ ∞

z0

dz′′e(−ks+iνs)z′′ ]

= H(z′ − z0)[e−ksz′+iνsz0 e
(ks−iνs)z0

ks − iνs
+ eksz′−iνsz0 e

−(ks−iνs)z′

ks − iνs
]

+H(z0 − z′)[e−ksz′+iνsz0 e
(ks−iνs)z′

ks − iνs
+ eksz′−iνsz0 e

−(ks−iνs)z0

ks − iνs
]

=
1

ks − iνs
[H(z′ − z0)(e−ks(z′−z0) + eiνs(z′−z0)) +H(z0 − z′)(e−ks(z0−z′) + eiνs(z0−z′))]

=
1

ks − iνs
[eiνs|z′−z0| + e−ks|z′−z0|]. (43)

Changing the variable z0 back to z′′, and collecting the four terms,

1
∇′2

eiksx′eiνs|z′−z′′|

νs
= ϕ(x′, z′, z′′) = I1 + I2 + I3 + I4

= − e
iksx′

2ksνs
[

1
ks + iνs

(eiνs|z′−z′′| − e−ks|z′−z′′|)

+
1

ks − iνs
(eiνs|z′−z′′| + e−ks|z′−z′′|)]

= − eiksx′

k2
s + ν2

s

[
eiνs|z′−z′′|

νs
− e−ks|z′−z′′|

iks
]. (44)

We obtained the same result as Zhang had for the operator 1
∇2 acting on the middle Ĝ0 (Zhang,

2006). This further analysis provides another perspective and confirms the previous elastic deriva-
tion and results as well.
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Conclusion and Future plan

In this note, 1. we made a brief summary of the previous work involving 1D three parameter elastic
medium by Zhang; for the first time, Zhang provided an explicit and direct set of equations for the
non-linear estimates, which clearly express the requirements for all four components of data to do
the inversion. 2. we also studied and discussed the integral operator 1

∇2 acting on Green’s function
for the non-linear terms, and provided a further understanding and explication.

Different media may have small differences in their medium properties, which if not correctly
estimated, can affect adversely the decision to drill. Linear terms may not be able to calculate small
changes accurately enough. Therefore non-linear terms play a significant role in better estimating
these medium properties. As we were led by Zhang to the first non-linear direct equations for the
1D three parameter elastic case, further progress on solving the equations for the non-linear terms
is going to be carried out. Mathematically, there could be many ways to solve these equations,
but we are trying to find a solution which is guided by the inverse scattering series. Although the
previous work is mainly on 1D media, the procedure can be extended to multi-D. The future work
will also examine the multi-D generalization.
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Appendix A

D̃PS,D̃SP and D̃SS in the (ks, zs; kg, zg;ω) domain; and the coefficients before every linear
quantity (a(1)

γ , a
(1)
ρ , a

(1)
µ )– different incidence angle θ

D̃PS(νg, ηg) = −1
4
(
kg
νg

+
kg
ηg

)ã(1)
ρ (−νg − ηg)−

β0
2

2ω2
kg(νg + ηg)(1−

kg
2

νgηg
)ã(1)
µ (−νg − ηg), (45)

where,
kg =

ω

β0
sin θPS ,

νg =
ω

α0

√
1− α2

0

β2
0

sin θPS ,

ηg =
ω

β0
cos θPS ,

D̃SP (νg, ηg) =
1
4
(
kg
νg

+
kg
ηg

)ã(1)
ρ (−νg − ηg) +

β0
2

2ω2
kg(νg + ηg)(1−

kg
2

νgηg
ã(1)
µ (−νg − ηg), (46)

where,
kg =

ω

α0
sin θSP ,

νg =
ω

α0
cos θSP ,

ηg =
ω

β0

√
1− β2

0

α2
0

sin θSP ,

D̃SS(kg, ηg) = −1
4
(1− kg

2

ηg2
)ã(1)
ρ (−2νg)− (

ηg
2 + kg

2

4ηg2
− kg

2

ηg2 + kg
2 ã

(1)
µ (−2ηg). (47)

where,
kg =

ω

β0
sin θSS ,

νg =
ω

β0
cos θSS .
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Appendix B

Response of incident compressional wave on a planar elastic interface

 

Figure 1: α0, β0 and ρ0 are the compressional wave velocity, shear wave velocity and density of the upper
layer, respectively; α1, β1 and ρ1 denote the compressional wave velocity, shear wave velocity and
density of the lower layer, RPP , RSP , TPP and TSP denote the coefficients of the reflected com-
pressional wave, the reflected shear wave, the transmitted compressional wave and the transmitted
shear wave,respectively (Foster et al., 1997).
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Appendix C

The perturbation V
In the actual medium, the 2D elastic wave equation is (Weglein and Stolt, 1992)

L~u ≡ [ρω2

(
1 0
0 1

)
+
(

∂1γ∂1 + ∂2µ∂2 ∂1(γ − 2µ)∂2 + ∂2µ∂1

∂2(γ − 2µ)∂1 + ∂1µ∂2 ∂2γ∂2 + ∂1µ∂1

)
]
[
u1

u2

]
= ~f,

~u = displacement
ρ = density,
γ = bulk modulus (≡ ρα2 where alpha = P-wave velocity),
µ = shear modulus (≡ ρβ2 where alpha = S-wave velocity),
ω temporal frequency (angular), ∂1 and ∂2 denote the derivative over x and z, respectively, and ~f
is the source term.

V ≡ L0 − L

= −ρ0

[
aρω

2 + α2
0aγ∂

2
1 + β2

0∂2aµ∂2 (α2
0aγ − 2β2

0aµ)∂1∂2 + β2
0∂2aµ∂1

∂2(α2
0aγ − 2β2

0aµ)∂1 + β2
0aµ∂1∂2 aρω

2 + α2
0∂2aγ∂2 + β2

0aµ∂
2
1

]
.

In PS domain:

V̂ = ΠVΠ−1Γ−1
0 =

(
V̂ PP V̂ PS

V̂ SP V̂ SS

)
.

V̂ PP
1 = −∇2a(1)

γ − ω2

alpha2
0

(a(1)
ρ ∂2

1 + ∂2a
(1)
ρ ∂2)

1
∇2

− [−2∂2
2a

(1)
mu∂

2
1 − 2∂2

1a
(1)
mu∂

2
2 + 4∂2

1∂2a
(1)
mu∂2]

1
∇2

,

V̂ PS
1 =

alpha2
0

β2
0

[
ω2

alpha2
0

(∂1a
(1)
ρ ∂2 − ∂2a

(1)
ρ ∂1) + 2∂1∂2a

(1)
mu(∂

2
2 − ∂2

1)− 2(∂2
2 − ∂2

1)a(1)
mu∂2∂1]

1
∇2

,

V̂ SP
1 = −[

ω2

alpha2
0

(∂1a
(1)
ρ ∂2 − ∂2a

(1)
ρ ∂1) + 2∂1∂2a

(1)
mu(∂

2
2 − ∂2

1)− 2(∂2
2 − ∂2

1)a(1)
mu∂2∂1]

1
∇2

,

V̂ SS
1 = −alpha

2
0

β2
0

[
ω2

alpha2
0

(a(1)
ρ ∂2

1 + ∂2a
(1)
ρ ∂2) + (∂2

2 − ∂2
1)a(1)

mu(∂
2
2 − ∂2

1)− ∂1∂2a
(1)
mu∂1∂2]

1
∇2

.
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Weglein, A. B., F. V. Araújo, P. M. Carvalho, R. H. Stolt, K. H. Matson, R. T. Coates, D. Corrigan,
D. J. Foster, S. A. Shaw, and H. Zhang. “Inverse Scattering Series and Seismic Exploration.”
Inverse Problems (2003): R27–R83.

Weglein, A. B., D. J. Foster, K. H. Matson, S. A. Shaw, P. M. Carvalho, and D. Corrigan. “Predict-
ing the correct spatial location of reflectors without knowing or determining the precise medium
and wave velocity: initial concept, algorithm and analytic and numerical example.” Journal of
Seismic Exploration 10 (2002): 367–382.

Weglein, Arthur B. and R.H. Stolt. “Approaches on linear and non-linear migration-inversion.
Personal Communication.” (1992).

Zhang, H. Direct non-linear acoustic and elastic inversion: Towards fundamentally new compre-
hensive and realistic target identification. PhD thesis, University of Houston, 2006.

Zhang, H. and A.B. Weglein. “The inverse scattering series for tasks associated with primaries:
depth imaging and direct non-linear inversion of 1D variable velocity and density acoustic media.”
SEG Technical Program Expanded Abstracts. 2005, 1705–1708.

Zhang, H. and A.B. Weglein. “Direct non-linear inversion of multi-parameter 1D elastic media
using the inverse scattering series.” SEG/Houston 2005 Annual Meeting. 2006, 284–311.

183



Direct non-linear inversion of 1D acoustic media using inverse scattering
subseries

H. Zhang†and A B. Weglein
†Presently at ConocoPhillips

Abstract

A task specific multi-parameter 1 direct non-linear inversion subseries of the inverse scattering
series is derived and tested for a velocity and density varying 1D acoustic medium. There are
various linear estimate solutions in the literature ( e.g., Raz, 1981, Clayton and Stolt, 1981, Stolt
and Weglein, 1985) that assume an adequate estimate of medium properties above any given
target reflector. However, this is the first seismic inversion method that: (1) neither assumes
nor requires an adequate estimate of medium properties above any reflector, and (2) does not
assume that the changes in physical properties satisfies a linear relationship to the reflection data
at the target, and (3) the most importantly the method stands alone in being a direct inversion.
The meaning of direct is that there are formulas that explicitly solve for and directly output
these physical properties, without e.g., search algorithms and optimization schemes, and proxies
that typically characterize indirect methods. Numerical test results indicate that one term
beyond linear provides added value beyond standard linear techniques and common practice for
estimating changes in physical properties at a target. Imaging and inversion for a two parameter
medium directly in terms of data and reference properties is much more complicated than that of
the one parameter case. The message delivered from this study extends and progresses beyond
the earlier one communicated in a one parameter velocity only medium, and serves as a necessary
and critical step in, and guide for, the development of the yet more complicated and realistic
elastic isotropic direct depth imaging and non-linear parameter estimation. Three important
issues are identified and/or further progressed within the multi-parameter acoustic context and
scope of this paper: (1) the concept of purposeful perturbation, (2) how the inverse series
addresses the phenomena in linear inversion known as leakage, and (3) special parameter for
linear inversion that is immune to linear inversion leakage, and the very significant implication of
the latter result for direct depth imaging without the velocity model, are presented and discussed
by analyzing these new two parameter non-linear direct inversion formulas and methods.

Introduction

The objective of seismic exploration is to determine the location (imaging) and mechanical proper-
ties (inversion) of subsurface targets to identify hydrocarbon resources in the earth using recorded
data. The inverse scattering series has a tremendous generality and comprehensiveness allow-
ing many distinct traditional processing objectives to be achieved within a single framework, but
without the traditional need to provide information about the properties that govern actual wave
propagation in the earth. It begins with scattering theory, which is the relationship between the

1Within the context and scope of this paper, a multi-parameter medium is an acoustic medium where the velocity
and/or density can vary.
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perturbation or alteration in a medium’s properties and the concomitant perturbation or change
in the wave field. The relationship between those two changes is always non-linear. Any change
in a medium will result in a change in the wave-field that is non-linearly related to that physical
property change.

In this paper we examine the relationship between the perturbation in a medium and the pertur-
bation in a wave field for the case of a 1D variable velocity and variable density acoustic medium.
We assume the original unperturbed medium is a homogeneous whole-space. We further assume
that free surface and internal multiples have been removed (see, e.g., Weglein et al., 2003). And
we assume that we are recording primaries, and our objectives are to: (1) locate reflectors and (2)
determine medium properties of the actual medium. In this paper we present: (1) the first deriva-
tion of equations to directly achieve those two distinct objectives for a one dimensional velocity and
density varying acoustic medium, and (2) we then reduce this general formalism to the special case
of a single horizontal reflector, where the acoustic medium above the reflector is known, but the
objective is to determine the acoustic properties of the half-space below the reflector. For the latter
single reflector case, the recorded data have a non-linear relationship with the property changes
across this reflector. Current inversion methods include: (1) the linear approximation (e.g., Clayton
and Stolt, 1981; Weglein and Stolt, 1992) which is often useful, especially in the presence of small
earth property changes across the boundary and/or small angle reflections, and (2) indirect model
matching methods with global searching (e.g., Tarantola et al., 1984; Sen and Stoffa, 1995) which
define an objective function assumed to be minimized when the best fitting model is obtained.
The assumptions of the former methods (like the small contrast assumptions) are often violated in
practice and can cause erroneous predictions; the latter category usually involves a significant and
often daunting computation effort (especially in multi-D cases) and/or sometimes have reported
erroneous or ambiguous results.

In this paper, a more comprehensive multi-parameter multi-dimensional direct non-linear inversion
framework is developed based on the inverse scattering task-specific subseries (see, e.g., Weglein
et al., 2003). In order to provide more accurate and reliable target identification especially with
large contrast, large angle target geometry, we isolated the inverse scattering subseries responsible
for non-linear amplitude inversion of data.

The original inverse scattering series research aimed at separating imaging and inversion tasks on
primaries was developed for a 1D acoustic one parameter case (constant density medium, only
velocity variable in depth) and a plane wave at normal incidence (Weglein et al., 2002; Shaw et al.,
2003). In this paper we move a step closer to seismic exploration relevance by extending that earlier
work to a multi-parameter case — two parameter case (velocity and density vary vertically in depth)
and allowing for point sources and receivers over a 1D acoustic medium. Clayton and Stolt (1981)
gave a two parameter linear inversion solution for 2D acoustic media (velocity and density vary
both vertically and laterally). In this paper, we use the same parameters but concentrate on 1D
acoustic media to derive the direct non-linear inversion solution. In the application of the direct
non-linear inverse algorithm, we move one step each time (e.g., from one parameter 1D acoustic
case to two parameter 1D acoustic case, or to one parameter 2D acoustic case, instead of ‘jumping’
directly to two parameter 2D acoustic case) so that we can solve the problem step by step and
learn lessons from each step which would guide us to step further towards our goal of greater
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realism and increased reliable prediction. For one parameter 1D and 2D acoustic media, some work
on direct non-linear imaging with reference velocity is presented by Shaw (2005) and Liu et al.
(2005). It has been shown in this paper that imaging and inversion for two parameter medium
are much more complicated compared to one parameter case, although it seems like just simply
adding one parameter. Examples of the new inverse issues that arise in a two parameter world (and
needed responses) that have no one parameter analogue are leakage, purposeful perturbation for
that issue, and the identification of the special parameter for inversion that avoids leakage, and the
conceptual insights that this understanding provides for our campaign to address pressing imaging
and inversion challenges.

For the direct non-linear inversion solution obtained in this paper, the tasks for imaging-only and
inversion-only terms are separated. Tests with analytic data indicate significant added value for
parameter predictions, beyond linear estimates, in terms of both the proximity to actual value and
the increased range of angles over which the improved estimates are useful.

A closed form of the inversion terms for the one-interface case is also obtained. This closed form
might be useful in predicting the precritical data using the postcritical data.

A special parameter ∆c (∆c = c−c0) (P-wave velocity change across an interface) is also found. Its
Born inversion (∆c)1 always has the right sign. That is, the sign of (∆c)1 is always the same as that
of ∆c. In practice, it could be very useful to know whether the velocity increases or decreases across
the interface. After changing parameters, from α (relative changes in P-wave bulk modulus) and β
(relative changes in density) to velocity and β, another form of the non-linear solution is obtained.
There is no leakage correction (please see details in the section on three important messages) in
this solution. This new form clearly indicates that the imaging terms care only about velocity
errors. The mislocation is due to the wrong velocity. This is suggestive of possible generalization
to multi-D medium, and also of possible model-type independent imaging which only depends on
velocity changes.

The following section is a brief introduction of the inverse scattering subseries. We then gave the
one dimensional multi-parameter acoustic derivation in detail, and that is followed by the numerical
tests for the single reflector case. We also provided a further discussion about the special physical
non-leaking acoustic parameter.

Inverse scattering subseries

Scattering theory relates the perturbation (the difference between the reference and actual medium
properties) to the scattered wave field (the difference between the reference medium’s and the
actual medium’s wave field). It is therefore reasonable that in discussing scattering theory, we
begin with the basic wave equations governing the wave propagation in the actual and reference
medium, respectively 2,

LG = δ, (1)
2In this introductory math development, we follow closely Weglein et al. (1997); Weglein et al. (2002); Weglein

et al. (2003).
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L0G0 = δ, (2)

where L and L0 are respectively the differential operators that describe wave propagation in the
actual and reference medium, and G and G0 are the corresponding Green’s operators. The δ on
the right hand side of both equations is a Dirac delta operator and represents an impulsive source.

The perturbation is defined as V = L0 − L. The Lippmann-Schwinger equation,

G = G0 +G0V G, (3)

relates G,G0 and V (see, e.g., Taylor, 1972). Iterating this equation back into itself generates the
forward scattering series

G = G0 +G0V G0 +G0V G0V G0 + · · · . (4)

Then the scattered field ψs ≡ G−G0 can be written as

ψs = G0V G0 +G0V G0V G0 + · · ·
= (ψs)1 + (ψs)2 + · · · , (5)

where (ψs)n is the portion of ψs that is nth order in V . The measured values of ψs are the data,
D, where

D = (ψs)ms = (ψs)on the measurement surface.

In the inverse scattering series, expanding V as a series in orders of D,

V = V1 + V2 + V3 + · · · , (6)

where the subscript “i” in Vi (i=1, 2, 3, ...) denotes the portion of V i-th order in the data.
Substituting Eq. (6) into Eq. (5), and evaluating Eq. (5) on the measurement surface yields

D = [G0(V1 + V2 + · · · )G0]ms + [G0(V1 + V2 + · · · )G0(V1 + V2 + · · · )G0]ms + · · · . (7)

Setting terms of equal order in the data equal, leads to the equations that determine V1, V2, . . .
directly from D and G0.

D = [G0V1G0]ms, (8)

0 = [G0V2G0]ms + [G0V1G0V1G0]ms, (9)

0 =[G0V3G0]ms + [G0V1G0V2G0]ms + [G0V2G0V1G0]ms
+ [G0V1G0V1G0V1G0]ms, (10)

etc. Equations (8) ∼ (10) permit the sequential calculation of V1, V2, . . ., and, hence, achieve
full inversion for V (see Eq. 6) from the recorded data D and the reference wave field (i.e., the
Green’s operator of the reference medium) G0. Therefore, the inverse scattering series is a multi-
D inversion procedure that directly determines physical properties using only reflection data and
reference medium information.
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Derivation of α1, β1 and α2, β2

In this section, we will consider a 1D acoustic two parameter earth model (e.g. bulk modulus and
density or velocity and density). We start with the 3D acoustic wave equations in the actual and
reference medium (Clayton and Stolt, 1981; Weglein et al., 1997)[

ω2

K(r)
+∇ · 1

ρ(r)
∇
]
G(r, rs;ω) = δ(r− rs), (11)

[
ω2

K0(r)
+∇ · 1

ρ0(r)
∇
]
G0(r, rs;ω) = δ(r− rs), (12)

where G(r, rs;ω) and G0(r, rs;ω) are respectively the free-space causal Green’s functions that
describe wave propagation in the actual and reference medium. K = c2ρ, is P-wave bulk modulus,
c is P-wave velocity and ρ is the density. The quantities with subscript “0” are for the reference
medium, and those without the subscript are for the actual medium. The perturbation is

V = L0 − L =
ω2α

K0
+∇ · β

ρ0
∇, (13)

where α = 1− K0
K and β = 1− ρ0

ρ are the two parameters we choose to do the inversion. Assuming
both ρ0 and c0 are constants, Eq. (12) becomes(

ω2

c20
+∇2

)
G0(r, rs;ω) = ρ0δ(r− rs). (14)

For the 1-D case, the perturbation V has the following form

V (z,∇) =
ω2α(z)
K0

+
1
ρ0
β(z)

∂2

∂x2
+

1
ρ0

∂

∂z
β(z)

∂

∂z
. (15)

V (z,∇), α(z) and β(z) can be expanded respectively as

V (z,∇) = V1(z,∇) + V2(z,∇) + · · · , (16)

α(z) = α1(z) + α2(z) + · · · , (17)

β(z) = β1(z) + β2(z) + · · · . (18)

Where the subscript “i” in Vi, αi and βi (i=1, 2, 3, ...) denote the portion of those quantities i-th
order in the data.Then we have

V1(z,∇) =
ω2α1(z)
K0

+
1
ρ0
β1(z)

∂2

∂x2
+

1
ρ0

∂

∂z
β1(z)

∂

∂z
, (19)

V2(z,∇) =
ω2α2(z)
K0

+
1
ρ0
β2(z)

∂2

∂x2
+

1
ρ0

∂

∂z
β2(z)

∂

∂z
, (20)

....
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Substituting Eq. (19) into Eq. (8), we can get the linear solution for α1 and β1 in the frequency
domain

D̃(qg, θ, zg, zs) = −ρ0

4
e−iqg(zs+zg)

[
1

cos2 θ
α̃1(−2qg) + (1− tan2 θ)β̃1(−2qg)

]
, (21)

where the subscripts s and g denote source and receiver quantities respectively, and qg, θ and
k = ω/c0 shown in Fig. 1, have the following relations (Matson, 1997)

qg = qs = k cos θ,
kg = ks = k sin θ.

111 ,, Kc

gq k

gk

zz

000 ,, Kc

Figure 1: The relationship between qg, kg and θ.

Similarly, substituting Eq. (20) into Eq. (9), we can get the solution for α2(z) and β2(z) as a
function of α1(z) and β1(z)

1
cos2 θ

α2(z) + (1− tan2 θ)β2(z) =− 1
2 cos4 θ

α2
1(z)−

1
2
(1 + tan4 θ)β2

1(z) +
tan2 θ

cos2 θ
α1(z)β1(z)

− 1
2 cos4 θ

α′1(z)

z∫
0

dz′[α1(z′)− β1(z′)]

+
1
2
(tan4 θ − 1)β′1(z)

z∫
0

dz′[α1(z′)− β1(z′)], (22)

where α′1(z) = dα1(z)
dz , β′1(z) = dβ1(z)

dz .

The first two parameter direct non-linear inversion of 1D acoustic media for a 2D experiment has
been obtained. As shown in Eq. (21) and Eq. (22), given two different angles θ, we can determine
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α1, β1 and then α2, β2. For a single-interface example, it can be shown that only the first three
terms on the right hand side contribute to parameter predictions, while the last two terms perform
imaging in depth since they will be zero after the integration across the interface (see the section
on three important messages). Therefore, in this solution, the tasks for imaging-only and inversion-
only terms are separated.

For the θ = 0 and constant density case, Eq. (22) reduces to the non-linear solution for 1D one
parameter normal incidence case (e.g., Shaw, 2005)

α2(z) = −1
2

α2
1(z) + α′1(z)

z∫
−∞

dz′α1(z′)

 . (23)

If another choice of free parameter other than θ (e.g., ω or kh) is selected, then the functional
form between the data and the first order perturbation Eq. (21) would change. Furthermore, the
relationship between the first and second order perturbation Eq. (22) would, then, also be different,
and new analysis would be required for the purpose of identifying specific task separated terms.
Empirically, the choice of θ as free parameter (for a 1D medium) is particularly well suited for
allowing a task separated identification of terms in the inverse series.

There are several important messages that exist in Eq. (21) and Eq. (22): (1) purposeful perturba-
tion, (2) leakage, and (3) the special parameter for inversion. These three concepts will be discussed
later in this paper. In Eq. (21), it seems simple and straightforward to use data at two angles in
order to obtain α1 and β1. This is what we do in this paper. However, by doing this, it requires a
whole new understanding of the definition of “the data”. That is part of the discoveries of on-going
research activities by Weglein et al. (2007). The imaging algorithm given by Liu et al. (2005) has
been generalized to the two parameter case by Weglein et al. (2007) based on the understanding
of Eq. (22).

A special case: one-interface model

In this section, we derive a closed form for the inversion-only terms. From this closed form, we can
easily get the same inversion terms as those in Eqs. (21) and (22). We also show some numerical
tests using analytic data. From the numerical results, we see how the corresponding non-linear
terms contribute to the parameter predictions such as the relative changes in the P-wave bulk
modulus

(
α = ∆K

K

)
, density

(
β = ∆ρ

ρ

)
, impedance

(
∆I
I

)
and velocity

(
∆c
c

)
.

Closed form for the inversion terms

1. Incident angle not greater than critical angle, i.e. θ ≤ θc

For a single interface example, the reflection coefficient has the following form (Keys, 1989)

R(θ) =
(ρ1/ρ0)(c1/c0)

√
1− sin2 θ −

√
1− (c21/c

2
0) sin2 θ

(ρ1/ρ0)(c1/c0)
√

1− sin2 θ +
√

1− (c21/c
2
0) sin2 θ

. (24)
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After adding 1 on both sides of Eq. (24), we can get

1 +R(θ) =
2 cos θ

cos θ + (ρ0/ρ1)
√(

c20/c
2
1

)
− sin2 θ

. (25)

Then, using the definitions of α = 1− K0
K1

= 1− ρ0c20
ρ1c21

and β = 1− ρ0
ρ1

, Eq. (25) becomes

4R(θ)
(1 +R(θ))2

=
α

cos2 θ
+ (1− tan2 θ)β − αβ

cos2 θ
+ β2 tan2 θ, (26)

which is the closed form we derived for the one interface two parameter acoustic inversion-only
terms.

2. Incident angle greater than critical angle, i.e. θ > θc

For θ > θc, Eq. (24) becomes

R(θ) =
(ρ1/ρ0)(c1/c0)

√
1− sin2 θ − i

√
(c21/c

2
0) sin2 θ − 1

(ρ1/ρ0)(c1/c0)
√

1− sin2 θ + i
√

(c21/c
2
0) sin2 θ − 1

. (27)

Then, Eq. (25) becomes

1 +R(θ) =
2 cos θ

cos θ + i (ρ0/ρ1)
√

sin2 θ −
(
c20/c

2
1

) , (28)

which leads to the same closed form as Eq. (26)

4R(θ)
(1 +R(θ))2

=
α

cos2 θ
+ (1− tan2 θ)β − αβ

cos2 θ
+ β2 tan2 θ.

As we see, this closed form is valid for all incident angles.

In addition, for normal incidence (θ = 0) and constant density (β = 0) media, the closed form Eq.
(26) will be reduced to

α =
4R

(1 +R)2
. (29)

This represents the relationship between α and R for the one parameter 1D acoustic constant
density medium and 1D normal incidence obtained in Innanen (2003). In this case, α becomes
1− c20/c

2
1 and R becomes (c1 − c0) / (c1 + c0).

3. Derivation of the inversion terms from the closed form

From the closed form Eq. (26), using Taylor expansion on the left hand side

1
(1 +R(θ))2

=
[
1−R(θ) +R2(θ)− . . .

]2
,
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and setting the terms of equal order in the data equal, we have

α1

cos2 θ
+ (1− tan2 θ)β1 = 4R(θ), (30)

α2

cos2 θ
+ (1− tan2 θ)β2 = −1

2
α2

1

cos4 θ
− 1

2
(1 + tan4 θ)β2

1 +
tan2 θ

cos2 θ
α1β1. (31)

For a one-interface example (in Fig. 2), Eqs. (21) and (22) will respectively reduce to the same
form as Eqs. (30) and (31), which is shown below.

Assume the interface surface is at depth z = a, and suppose zs = zg = 0.

000 ,, Kc

111 ,, Kc

zz

xx

aa

00

Figure 2: 1D one-interface acoustic model.

Using the analytic data (Clayton and Stolt, 1981; Weglein et al., 1986),

D̃(qg, θ) = ρ0R(θ)
e2iqga

4πiqg
, (32)

and substituting Eq. (32) into Eq. (21), after Fourier transformation over 2qg, for z > a and fixed
θ, we get

1
cos2 θ

α1(z) + (1− tan2 θ)β1(z) = 4R(θ)H(z − a). (33)

Also, the non-linear solution Eq. (22) will reduce to

1
cos2 θ

α2(z) + (1− tan2 θ)β2(z) =− 1
2 cos4 θ

α2
1(z)−

1
2
(1 + tan4 θ)β2

1(z)

+
tan2 θ

cos2 θ
α1(z)β1(z), (34)

The two equations Eqs. (33) and (34) agree with Eqs. (30) and (31), respectively.
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Numerical tests

From Eq. (33), we choose two different angles to solve for α1 and β1

β1(θ1, θ2) = 4
R(θ1) cos2 θ1 −R(θ2) cos2 θ2

cos(2θ1)− cos(2θ2)
, (35)

α1(θ1, θ2) = β1(θ1, θ2) + 4
R(θ1)−R(θ2)

tan2 θ1 − tan2 θ2
. (36)

Similarly, from Eq. (34), given two different angles we can solve for α2 and β2 in terms of α1 and
β1

β2(θ1, θ2) =
[
−1

2
α2

1

(
1

cos2 θ1
− 1

cos2 θ2

)
+ α1β1

(
tan2 θ1 − tan2 θ2

)
− 1

2
β2

1

×
(

cos2 θ1 − cos2 θ2 +
sin4 θ1
cos2 θ1

− sin4 θ2
cos2 θ2

)]
/ [cos(2θ1)− cos(2θ2)] , (37)

α2(θ1, θ2) =β2(θ1, θ2) +
[
−1

2
α2

1

(
1

cos4 θ1
− 1

cos4 θ2

)
+ α1β1

(
tan2 θ1
cos2 θ1

− tan2 θ2
cos2 θ2

)
−1

2
β2

1

(
tan4 θ1 − tan4 θ2

)]
/
(
tan2 θ1 − tan2 θ2

)
; (38)

where α1 and β1 in Eqs. (37) and (38) denote α1(θ1, θ2) and β1(θ1, θ2), respectively.

For a specific model, ρ0 = 1.0g/cm3, ρ1 = 1.1g/cm3, c0 = 1500m/s and c1 = 1700m/s, in the
following figures we give the results for the relative changes in the P-wave bulk modulus

(
α = ∆K

K

)
,

density
(
β = ∆ρ

ρ

)
, impedance

(
∆I
I

)
and velocity

(
∆c
c

)
corresponding to different pairs of θ1 and

θ2.

From Fig. 3, we can see that when we add α2 to α1, the result is much closer to the exact value
of α. Furthermore, the result is better behaved; i.e., the plot surface becomes flatter, over a larger
range of precritical angles. Similarly, as shown in Fig. 4, the results of β1 + β2 are much better
than those of β1. In addition, the sign of β1 is wrong at some angles, while, the results for β1 + β2

always have the right sign. So after including β2, the sign of the density is corrected, which is very
important in the earth identification, and also the results of ∆I

I (see Fig. 5 ) and ∆c
c (see Fig. 6)

are much closer to their exact values respectively compared to the linear results.

Especially, the values of
(

∆c
c

)
1

are always greater than zero, that is, the sign of (∆c)1 is always
positive, which is the same as that of the exact value ∆c. We will further discuss this in the next
section.

Three important messages

As mentioned before, in general, since the relationship between data and target property changes
is non-linear, linear inversion will produce errors in target property prediction. When one actual
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property change is zero, the linear prediction of the change can be non-zero. Also, when the actual
change is positive, the predicted linear approximation can be negative. There is a special parameter
for linear inversion of acoustic media, that never suffers the latter problem.

From Eq. (24) we can see that when c0 = c1, the reflection coefficient is independent of θ, then
from the linear form Eq. (36), we have(

∆c
c

)
1

=
1
2
(α1 − β1) = 0 when ∆c = 0,

i.e., when ∆c = 0, (∆c)1 = 0. This generalizes to (∆c)1 > 0 when ∆c > 0, or (∆c)1 < 0 when
∆c < 0, as well. This can be shown mathematically (See Appendix B for details).

Therefore, we can, first, get the right sign of the relative change in P-wave velocity from the linear
inversion (∆c)1, then, get more accurate values by including non-linear terms.

Another interesting point is that the image does not move when the velocity does not change across
an interface, i.e., c0 = c1, since, in this situation, the integrands of imaging terms α1 − β1 in Eq.
(22) are zero. We can see this more explicitly when we change the two parameters α and β to ∆c

c
and β. Using the two relationships below (See details in Appendix A)(

∆c
c

)
1

=
1
2
(α1 − β1),

and (
∆c
c

)
2

=
1
2

[
1
4
(α1 + β1)2 − β2

1 + (α2 − β2)
]
,

rewriting Eq. (22) as

1
cos2 θ

(
∆c
c

)
2

(z) + β2(z) =
cos2 θ − 2
2 cos4 θ

(
∆c
c

)2

1

(z)− 1
2
β2

1(z)

− 1
cos4 θ

(
∆c
c

)′
1

(z)

z∫
0

dz′
(

∆c
c

)
1

− 1
cos2 θ

β′1(z)

z∫
0

dz′
(

∆c
c

)
1

. (39)

This equation indicates two important concepts. One is leakage: there is no leakage correction at
all in this expression. Here the leakage means that, if the actual value of α (relative changes in
P-wave bulk modulus) is zero, its linear approximation α1 could be non-zero since α and β are
coupled together (like the coupled term α1β1 in Eq. 22) and α1 could get leakage values from β1.
While in Eq. (39), no such coupled term is present at all and thus, if the actual changes in the
velocity are zero, then its linear inversion

(
∆c
c

)
1

would be zero and there would be no leakage from
β1. This leakage issue or coupled term has no analogue in the 1D one parameter acoustic case
(Eq. 23) since in this case we only have one parameter and there is no other parameter to leak
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into. In other words, in the one parameter (velocity) case, each ‘jump’ in the amplitude of the data
(primaries only) corresponds to each wrong location with a wrong amplitude for the parameter
predicted in the linear inverse step; while in the two parameter case of this paper, each ‘jump’ in
the data no longer has the simple one-to-one relationship with the amplitude and location of the
two parameters.

The other concept is purposeful perturbation. The integrand
(

∆c
c

)
1

of the imaging terms clearly
tells that if we have the right velocity, the imaging terms will automatically be zero even without
doing any integration; otherwise, if we do not have the right velocity, these imaging terms would
be used to move the interface closer to the right location from the wrong location. The conclusion
from this equation is that the depth imaging terms depend only on the velocity errors.

Conclusion

In this paper, we derive the first two parameter direct non-linear inversion solution for 1D acoustic
media with a 2D experiment. Numerical tests show that the terms beyond linearity in earth
property identification subseries provide added value. Although the model we used in the numerical
tests is simple, the potential within Eqs. (21) and (22) applies to more complex models since the
inverse scattering series is a direct inversion procedure which inverts data directly without knowing
the specific properties above the target.

As shown above, adding one parameter in the wave equation makes the problem much more com-
plicated in comparison with the one parameter case. Three important concepts (purposeful pertur-
bation, leakage and special parameter for inversion) have been discussed and how they relate to the
linear and non-linear results for parameter estimation, addressing leakage, and imaging. Further
progress on these issues is being carried out with on-going research.

The work presented in this paper is an important step forward for imaging without the velocity
model, and target identification for the minimally acceptable elastic isotropic target. In this paper
for the first time the general one-dimensional formalism for a depth varying acoustic medium is
presented for depth imaging and direct parameter estimation, without needing to determine medium
velocity properties that govern actual wave propagation for depth imaging, or what medium is above
a target to be identified. The encouraging numerical results motivated us to move one step further
— extension of our work to the isotropic elastic case (see, e.g., Boyse and Keller, 1986) using three
parameters. The companion and sequel paper to this one provides that extension.
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Appendix A

In this appendix, we derive the expressions of
(

∆c
c

)
1
,
(

∆c
c

)
2
,
(

∆I
I

)
1

and
(

∆I
I

)
2

in terms of α1, β1

and α2, β2. Define ∆c = c− c0, ∆I = I − I0, ∆K = K −K0 and ∆ρ = ρ− ρ0.

Since K = c2ρ, then we have

(c−∆c)2 =
K −∆K
ρ−∆ρ

.

Divided by c2, the equation above will become

2
(

∆c
c

)
−
(

∆c
c

)2

=
∆K
K − ∆ρ

ρ

1− ∆ρ
ρ

.

Remember that α = ∆K
K and β = ∆ρ

ρ , the equation above can be rewritten as

2
(

∆c
c

)
−
(

∆c
c

)2

=
α− β

1− β
.

Then we have

2
(

∆c
c

)
−
(

∆c
c

)2

= (α− β)(1 + β + β2 + · · · ), (40)

where the series expansion is valid for |β| < 1.

Similar to Eqs. (17) and (18), ∆c
c can be expanded as(

∆c
c

)
=
(

∆c
c

)
1

+
(

∆c
c

)
2

+ · · · . (41)

Then substitute Eqs. (41), (17) and (18) into Eq. (40), and set those terms of equal order equal
on both sides of Eq. (40), we can get (

∆c
c

)
1

=
1
2
(α1 − β1), (42)

and (
∆c
c

)
2

=
1
2

[
1
4
(α1 + β1)2 − β2

1 + (α2 − β2)
]
. (43)

Similarly, using I = cρ, we have

(I −∆I)2 = (K −∆K)(ρ−∆ρ).

Divided by I2, the equation above will become

2
(

∆I
I

)
−
(

∆I
I

)2

= α+ β − αβ. (44)
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Expanding ∆I
I as (

∆I
I

)
=
(

∆I
I

)
1

+
(

∆I
I

)
2

+ · · · , (45)

and substitute Eqs. (45), (17) and (18) into Eq. (44), setting those terms of equal order equal on
both sides of Eq. (44), we can get (

∆I
I

)
1

=
1
2
(α1 + β1), (46)

and (
∆I
I

)
2

=
1
2

[
1
4
(α1 − β1)2 + (α2 + β2)

]
. (47)

Appendix B

In this appendix, we show that
(

∆c
c

)
1

has the same sign as ∆c. For the single interface example,
from Eqs. (36) and (42), we have (

∆c
c

)
1

= 2
R(θ1)−R(θ2)

tan2 θ1 − tan2 θ2
.

The reflection coefficient is

R(θ) =
(ρ1/ρ0)(c1/c0)

√
1− sin2 θ −

√
1− (c21/c

2
0) sin2 θ

(ρ1/ρ0)(c1/c0)
√

1− sin2 θ +
√

1− (c21/c
2
0) sin2 θ

.

Let
A(θ) = (ρ1/ρ0)(c1/c0)

√
1− sin2 θ,

B(θ) =
√

1− (c21/c
2
0) sin2 θ.

Then
R(θ1)−R(θ2) = 2

A(θ1)B(θ2)−B(θ1)A(θ2)
[A(θ1) +B(θ1)] [A(θ2) +B(θ2)]

,

where the denominator is greater than zero. The numerator is

2 [A(θ1)B(θ2)−B(θ1)A(θ2)] =2(ρ1/ρ0)(c1/c0)
[√

1− sin2 θ1

√
1− (c21/c

2
0) sin2 θ2

−
√

1− sin2 θ2

√
1− (c21/c

2
0) sin2 θ1

]
.

Let
C =

√
1− sin2 θ1

√
1− (c21/c

2
0) sin2 θ2,

D =
√

1− sin2 θ2

√
1− (c21/c

2
0) sin2 θ1.
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Then,

C2 −D2 =
(
c21
c20
− 1
)

(sin2θ1 − sin2θ2).

When c1 > c0 and θ1 > θ2 , we have (Noticing that both C and D are positive.)(
c21
c20
− 1
)

(sin2θ1 − sin2θ2) > 0,

so
R(θ1)−R(θ2) > 0;

Similarly, when c1 < c0 and θ1 > θ2 , we have(
c21
c20
− 1
)

(sin2θ1 − sin2θ2) < 0,

so
R(θ1)−R(θ2) < 0.

Remembering that
(

∆c
c

)
1

= 2 R(θ1)−R(θ2)
tan2 θ1−tan2 θ2

. So for c1 > c0, (∆c)1 > 0 and for c1 < c0, (∆c)1 < 0 .
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Figure 3: α1 (top) and α1 + α2 (bottom) displayed as a function of two different angles. The graphs on
the right are the corresponding contour plots of the graphs on the left. In this example, the exact
value of α is 0.292.
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Figure 4: β1 (top) and β1 + β2 (bottom). In this example, the exact value of β is 0.09.
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Figure 5: Linear approximation to relative change in impedance (see details in Appendix A)
(

∆I
I

)
1

=
1
2 (α1 + β1) (top). Sum of linear and first non-linear terms

(
∆I
I

)
1

+
(

∆I
I

)
2

=
(

∆I
I

)
1

+
1
2

[
1
4 (α1 − β1)2 + (α2 + β2)

]
(bottom). In this example, the exact value of ∆I

I is 0.198.
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Figure 6: Linear approximation to relative change in velocity (see details in Appendix A)
(

∆c
c

)
1

=
1
2 (α1 − β1) (top). Sum of linear and first non-linear terms

(
∆c
c

)
1

+
(

∆c
c

)
2

=
(

∆c
c

)
1

+
1
2

[
1
4 (α1 + β1)2 − β2

1 + (α2 − β2)
]

(bottom). In this example, the exact value of ∆c
c is 0.118.
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Direct non-linear inversion of multi-parameter 1D elastic media using the
inverse scattering series

H. Zhang†and A B. Weglein
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Abstract

In this paper, we present the first non-linear direct target identification method and algorithm
for 1D elastic media (P velocity, shear velocity and density vary in depth) from the inverse
scattering series. Direct non-linear means that we provide explicit formulas that: (1) input data
and directly output changes in material properties, without the use or need for any indirect pro-
cedures such as model matching, searching, optimization or other assumed aligned objectives or
proxies, and (2) the algorithms recognize and directly invert the intrinsic non-linear relationship
between changes in material properties and changes in the concomitant wave-field. The results
clearly demonstrate that, in order to achieve full elastic inversion, all four components of data
(D̂PP , D̂PS , D̂SP and D̂SS) are needed. The method assumes that only data and reference
medium properties are input, and terms in the inverse series for moving mislocated reflectors
resulting from the linear inverse term, are separated from amplitude correction terms. Although
in principle this direct inversion approach requires all four components of elastic data, synthetic
tests indicate that a consistent value-added result may be achieved given only D̂PP measure-
ments, as long as the D̂PP were used to approximately synthesize the D̂PS , D̂SP and D̂SS

components. We can reasonably infer that further value would derive from actually measuring
D̂PP , D̂PS , D̂SP and D̂SS as the method requires. For the case that all four components of
data are available, we give one consistent method to solve for all of the second terms (the first
terms beyond linear). The method’s nonlinearity and directness provides this unambiguous data
requirement message, and that unique clarity, and the explicit non-linear formulas casts doubts
and reasonable concerns for indirect methods, in general, and their assumed aligned goals, e.g.,
using model matching objectives, that would never recognize the fundamental inadequacy from
a basic physics point of view of using only PP data to perform elastic inversion. There are im-
portant conceptual and practical implications for the link between data acquisition and target
identification goals and objectives.

Introduction

The ultimate objective of inverse problems is to determine medium and target properties from
measurements external to the object under investigation. At the very first moment of problem defi-
nition, there is an immediate requirement and unavoidable expectation, that the model type of the
medium be specified. In that step of model type specification, the number and type of parameters
and dimension of spatial variation of those parameters are given, and carefully prescribed, and in
that way you provide the inverse problem with clarity and meaning. Among the different model
types used in exploration seismology are, e.g., acoustic, elastic, heterogeneous, anisotropic, and
anelastic, and perhaps most important, the dimension of variability of the properties associated
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with these model types. One would reasonably expect that the details of methods and algorithms
for inversion objectives, and any tasks associated with achieving those ultimate objectives, would
overall and each separately depend upon that starting assumption on model type. However, the
ultimate objective of seismic inversion has never been achieved in a straight ahead single step man-
ner directly from the seismic data, and that lack of success has not been due to a lack of computer
power. The indirect model matching procedures have that computer power problem, especially in
the applications to a multi-dimensional complex earth, where it is rare to have a reasonable proxi-
mal starting model. Those complex ill-defined geologic circumstances are the biggest impediments
and challenges to current exploration and production seismic effectiveness.

The only direct multi-dimensional inversion procedure for seismic application, the inverse scattering
series, does not require a proximal starting model and only assumes reference medium information.
Of course, the whole inverse series has very limited application (Carvalho et al., 1992). What makes
the inverse scattering series powerful is the so-called task isolated subseries which is a subset of
the whole series that acts like only one task is performed for that subset (Weglein et al., 2003).
All of these subseries act in a certain sequence so that the total seismic data can be processed
accordingly. The order of processing is : (1) free-surface multiple removal, (2) internal multiple
removal, (3) depth imaging without velocity, and (4) inversion or target identification. Since the
entire process requires only reflection data and reference medium information, it is reasonable to
assume that these intermediate steps, i.e., all of the derived subseries which are associated with
achieving that objective, would also be attainable with only the reference medium and reflection
data and no subsurface medium information is required.

The free surface multiple removal and internal multiple attenuation subseries have been presented by
(Carvalho, 1992; Araújo, 1994; Weglein et al., 1997; Matson, 1997). Those two multiple procedures
are model type independent, i.e., they work for acoustic, elastic and anelastic medium. Taking
internal multiples from attenuation to elimination is being studied (Ramı́rez and Weglein, 2005).
The task specific subseries associated with primaries (i.e., for imaging and inversion) have been
progressed too: (1) imaging without the velocity for one parameter 1D and then 2D acoustic media
(Weglein et al., 2002; Shaw and Weglein, 2003; Shaw et al., 2003a; Shaw et al., 2003b; Shaw et al.,
2004; Shaw and Weglein, 2004; Liu and Weglein, 2003; Liu et al., 2004; Liu et al., 2005), and
(2) direct non-linear inversion for multi-parameter 1D acoustic and then elastic media (Zhang and
Weglein, 2005). Furthermore, recent work (Innanen and Weglein, 2004; Innanen and Weglein, 2005)
suggests that some well-known seismic processing tasks associated with resolution enhancement
(i.e., “Q-compensation”) can be accomplished within the task-separated inverse scattering series
framework. In this paper, we focus on item (2) above.

Compared with model type independent multiple removal procedures, there is a full expectation
that tasks and algorithms associated with primaries will have a closer interest in model type. For
example, there is no way to even imagine that medium property identification can take place without
reference to a specific model type. Tasks and issues associated with structural determination,
without knowing the medium, are also vastly different depending on the dimension of variation
number of velocities that are required for imaging. Hence, a staged approach and isolation of tasks
philosophy is essential in this yet tougher neighborhood, and even more in demand for seeking
insights and then practical algorithms for these more complicated and daunting objectives. We
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adopt the staged and isolation of issues approach for primaries. The isolated task achievement
plan can often spin-off incomplete but useful intermediate objectives. The test and standard is not
necessarily how complete the method is but rather how does it compare to, and improve upon,
current best practice.

The stages within the strategy for primaries are as follows: (1) 1D earth, with one parameter,
velocity as a function of depth, and a normal incidence wave, (2) 1D earth with one parameter
subsurface and offset data, one shot record; (3) 2D earth with one parameter, velocity, varying in
x and z, and a suite of shot records; (4) 1D acoustic earth with two parameters varying, velocity
and density, one propagation velocity, and one shot record of PP data, and (5) 1D elastic earth,
two elastic isotropic parameters and density, and two wave speeds, for P and S waves, and PP, PS,
SP, and SS shot records data collected. This paper takes another step of direct non-linear inversion
methodology, and task isolation and specifically for tasks associated with primaries, to the 1D
elastic case, stage (5). The model is elastic and another paper in acoustic has been presented in
Zhang and Weglein (2005). We take these steps and learn to navigate through this complexity and
steer it towards useful and powerful algorithms.

However, more realism is more complicated with more issues involved. Following the task separation
strategy, we ask the question what kind of tasks should we expect in this more complex, elastic,
setting? In the acoustic case, for example, the acoustic medium only supports P-waves, and hence
only one reference velocity (P-wave velocity) is involved. Therefore, when only one velocity is
incorrect (i.e., poorly estimated), there exists only one “mislocation” for each parameter, and the
imaging terms only need to correct this one mislocation. When we extend our previous work
on the two parameter acoustic case to the present three parameter elastic case, there will be four
mislocations because of the two reference velocities (P wave velocity and S velocity). Our reasoning
is that the elastic medium supports both P- and S-wave propagation, and hence two reference
velocities (P-wave velocity and S-wave velocity) are involved. When both of these velocities are
incorrect, generally, there exist four mislocations due to each of four different combinations 1 of the
two wrong velocities. Therefore, in non-linear elastic imaging-inversion, the imaging terms need to
correct the four mislocations arising from linear inversion of any single mechanical property, such
that a single correct location for the corresponding actual change in that property is determined.

In this paper, the first non-linear inversion term for three parameter 1D elastic medium is presented.
It is demonstrated that under the inverse scattering series inversion framework, all four components
of the data are needed in order to perform full elastic inversion. For the case that we don’t have
all four components data and only PP data are available, encouraging inversion results have been
obtained by constructing other components of data from PP data. This means that we could
perform elastic inversion only using pressure measurements, i.e. towed streamer data. For the case
that all four components of data are available, a consistent method is provided. Further tests and
evaluation of the four components of data.

The paper has the following structure: the next section is a brief introduction to the inverse
1The “four combinations” refers to PP, PS, SP and SS, where, for instance, PP means P-wave incidence, and

P-wave reflection. Since P-waves non-normal incidence on an elastic interface can produce S-waves, or vice versa,
which in those cases are known as converted waves (Aki and Richards, 2002), the elastic data generally contain four
components: PP, PS, SP and SS.
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scattering series and then presents, respectively, the derivations and numerical tests for elastic non-
linear inversion when only PP data is available. A full non-linear elastic inversion method is also
provided. Finally we will present some concluding remarks.

Background for 2D elastic inversion

In this section we consider the inversion problem in two dimensions for an elastic medium. We
start with the displacement space, and then, for convenience (see e.g., (Weglein and Stolt, 1992);
(Aki and Richards, 2002)), we change the basis and transform the equations to PS space. Finally,
we do the elastic inversion in the PS domain.

In the displacement space

We begin with some basic equations in the displacement space (Matson, 1997):

Lu = f , (1)

L0u = f , (2)

LG = δ, (3)

L0G0 = δ, (4)

where L and L0 are the differential operators that describe the wave propagation in the actual
and reference medium, respectively, u and f are the corresponding displacement and source terms,
respectively, and G and G0 are the corresponding Green’s operators for the actual and reference
medium. In the following, the quantities with subscript “0” are for the reference medium, and
those without the subscript are for the actual medium.

Following closely Weglein et al. (1997); Weglein et al. (2002) and Weglein et al. (2003), defining
the perturbation V = L0 − L, the Lippmann- Schwinger equation for the elastic media in the
displacement space is

G = G0 +G0V G. (5)

Iterating this equation back into itself generates the Born series

G = G0 +G0V G0 +G0V G0V G0 + · · · . (6)

We define the data D as the measured values of the scattered wave field. Then, on the measurement
surface, we have

D = G0V G0 +G0V G0V G0 + · · · . (7)

Expanding V as a series in orders of D we have

V = V1 + V2 + V3 + · · · . (8)
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Where the subscript “i” in Vi (i=1, 2, 3, ...) denotes the portion of V i-th order in the data.
Substituting Eq. (8) into Eq. (7), evaluating Eq. (7), and setting terms of equal order in the data
equal, the equations that determine V1, V2, . . . from D and G0 would be obtained.

D = G0V1G0, (9)

0 = G0V2G0 +G0V1G0V1G0, (10)

....

In the actual medium, the 2-D elastic wave equation is (Weglein and Stolt, 1992)

Lu ≡
[
ρω2

(
1 0
0 1

)
+
(

∂1γ∂1 + ∂2µ∂2 ∂1(γ − 2µ)∂2 + ∂2µ∂1

∂2(γ − 2µ)∂1 + ∂1µ∂2 ∂2γ∂2 + ∂1µ∂1

)][
u1

u2

]
= f , (11)

where

u =
[
u1

u2

]
= displacement,

ρ = density,

γ = bulk modulus (≡ ρα2 where α = P-wave velocity),

µ = shear modulus (≡ ρβ2 where β = S-wave velocity),

ω = temporal frequency (angular), ∂1 and ∂2 denote the derivative over x and z, respectively, and

f is the source term.

For constant (ρ, γ, µ) = (ρ0, γ0, µ0), (α, β) = (α0, β0), the operator L becomes

L0 ≡
[
ρ0ω

2

(
1 0
0 1

)
+
(
γ0∂

2
1 + µ0∂

2
2 (γ0 − µ0)∂1∂2

(γ0 − µ0)∂1∂2 µ0∂
2
1 + γ0∂

2
2

)]
. (12)

Then,

V ≡L0 − L

=− ρ0

[
aρω

2 + α2
0∂1aγ∂1 + β2

0∂2aµ∂2 ∂1(α2
0aγ − 2β2

0aµ)∂2 + β2
0∂2aµ∂1

∂2(α2
0aγ − 2β2

0aµ)∂1 + β2
0∂1aµ∂2 aρω

2 + α2
0∂2aγ∂2 + β2

0∂1aµ∂1

]
, (13)

where aρ ≡ ρ
ρ0
− 1, aγ ≡ γ

γ0
− 1 and aµ ≡ µ

µ0
− 1 are the three parameters we choose to do the

elastic inversion. For a 1D earth (i.e. aρ, aγ and aµ are only functions of depth z), the expression
above for V becomes

V = −ρ0

[
aρω

2 + α2
0aγ∂

2
1 + β2

0∂2aµ∂2 (α2
0aγ − 2β2

0aµ)∂1∂2 + β2
0∂2aµ∂1

∂2(α2
0aγ − 2β2

0aµ)∂1 + β2
0aµ∂1∂2 aρω

2 + α2
0∂2aγ∂2 + β2

0aµ∂
2
1

]
. (14)
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Transforming to PS space

For convenience, we can change the basis from u =
[
u1

u2

]
to
(
φP

φS

)
to allow L0 to be diagonal,

Φ =
(
φP

φS

)
=
[
γ0(∂1u1 + ∂2u2)
µ0(∂1u2 − ∂2u1)

]
, (15)

also, we have (
φP

φS

)
= Γ0Πu =

[
γ0(∂1u1 + ∂2u2)
µ0(∂1u2 − ∂2u1)

]
, (16)

where Π =
(
∂1 ∂2

−∂2 ∂1

)
, Γ0 =

(
γ0 0
0 µ0

)
. In the reference medium, the operator L0 will transform

in the new basis via a transformation

L̂0 ≡ ΠL0Π−1Γ−1
0 =

(
L̂P0 0
0 L̂S0

)
,

where L̂0 is L0 transformed to PS space, Π−1 =
(
∂1 −∂2

∂2 ∂1

)
∇−2 is the inverse matrix of Π,

L̂P0 = ω2/α2
0 +∇2, L̂S0 = ω2/β2

0 +∇2, and

F = Πf =
(
FP

FS

)
. (17)

Then, in PS domain, Eq. (2) becomes,(
L̂P0 0
0 L̂S0

)(
φP

φS

)
=
(
FP

FS

)
. (18)

Since G0 ≡ L−1
0 , let ĜP0 =

(
L̂P0

)−1
and ĜS0 =

(
L̂S0

)−1
, then the displacement G0 in PS domain

becomes

Ĝ0 = Γ0ΠG0Π−1 =
(
ĜP0 0
0 ĜS0

)
. (19)

So, in the reference medium, after transforming from the displacement domain to PS domain, both
L0 and G0 become diagonal.

Multiplying Eq. (5) from the left by the operator Γ0Π and from the right by the operator Π−1,
and using Eq. (19),

Γ0ΠGΠ−1 = Ĝ0 + Ĝ0

(
ΠVΠ−1Γ−1

0

)
Γ0ΠGΠ−1

= Ĝ0 + Ĝ0V̂ Ĝ, (20)

where the displacement Green’s operator G is transformed to the PS domain as

Ĝ = Γ0ΠGΠ−1 =
(
ĜPP ĜPS

ĜSP ĜSS

)
. (21)
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The perturbation V in the PS domain becomes

V̂ = ΠVΠ−1Γ−1
0 =

(
V̂ PP V̂ PS

V̂ SP V̂ SS

)
, (22)

where the left superscripts of the matrix elements represent the type of measurement and the right
ones are the source type.

Similarly, applying the PS transformation to the entire inverse series gives

V̂ = V̂1 + V̂2 + V̂3 + · · · . (23)

It follows, from Eqs. (20) and (23) that

D̂ = Ĝ0V̂1Ĝ0, (24)

Ĝ0V̂2Ĝ0 = −Ĝ0V̂1Ĝ0V̂1Ĝ0, (25)
...

where D̂ =
(
D̂PP D̂PS

D̂SP D̂SS

)
are the data in the PS domain.

In the displacement space we have, for Eq. (1),

u = Gf . (26)

Then, in the PS domain, Eq. (26) becomes

Φ = ĜF. (27)

On the measurement surface, we have

Ĝ = Ĝ0 + Ĝ0V̂1Ĝ0. (28)

Substituting Eq. (28) into Eq. (27), and rewriting Eq. (27) in matrix form:(
φP

φS

)
=
(
ĜP0 0
0 ĜS0

)(
FP

FS

)
+
(
ĜP0 0
0 ĜS0

)(
V̂ PP

1 V̂ PS
1

V̂ SP
1 V̂ SS

1

)(
ĜP0 0
0 ĜS0

)(
FP

FS

)
. (29)

This can be written as the following two equations

φP = ĜP0 F
P + ĜP0 V̂

PP
1 ĜP0 F

P + ĜP0 V̂
PS
1 ĜS0F

S , (30)

φS = ĜS0F
S + ĜS0 V̂

SP
1 ĜP0 F

P + ĜS0 V̂
SS
1 ĜS0F

S . (31)

We can see, from the two equations above, that for homogeneous media, (no perturbation, V̂1 = 0),
there are only direct P and S waves and that the two kind of waves are separated. However, for
inhomogeneous media, these two kinds of waves will be mixed together. If only the P wave is
incident, FP = 1, FS = 0, then the two Eqs. (30) and (31) above are respectively reduced to

φP = ĜP0 + ĜP0 V̂
PP
1 ĜP0 , (32)
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φS = ĜS0 V̂
SP
1 ĜP0 . (33)

Hence, in this case, there is only the direct P wave ĜP0 , and no direct wave S. But there are two
kinds of scattered waves: one is the P-to-P wave ĜP0 V̂

PP
1 ĜP0 , and the other is the P-to-S wave

ĜS0 V̂
SP
1 ĜP0 . For the acoustic case, only the P wave exists, and hence we only have one equation

φP = ĜP0 + ĜP0 V̂
PP
1 ĜP0 .

Similarly, if only the S wave is incident, FP = 0, FS = 1, and the two Eqs. (30) and (31) are,
respectively, reduced to

φP = ĜP0 V̂
PS
1 ĜS0 , (34)

φS = ĜS0 + ĜS0 V̂
SS
1 ĜS0 . (35)

In this case, there is only the direct S wave ĜS0 , and no direct P wave. There are also two kinds of
scattered waves: one is the S-to-P wave ĜP0 V̂

PS
1 ĜS0 , the other is the S-to-S wave ĜS0 V̂

SS
1 ĜS0 .

Linear inversion of a 1D elastic medium

Writing Eq. (24) in matrix form(
D̂PP D̂PS

D̂SP D̂SS

)
=
(
ĜP0 0
0 ĜS0

)(
V̂ PP

1 V̂ PS
1

V̂ SP
1 V̂ SS

1

)(
ĜP0 0
0 ĜS0

)
, (36)

leads to four equations
D̂PP = ĜP0 V̂

PP
1 ĜP0 , (37)

D̂PS = ĜP0 V̂
PS
1 ĜS0 , (38)

D̂SP = ĜS0 V̂
SP
1 ĜP0 , (39)

D̂SS = ĜS0 V̂
SS
1 ĜS0 . (40)

For zs = zg = 0, in the (ks, zs; kg, zg;ω) domain, we get the following four equations relating the
linear components (the “linear” is denoted by adding a superscript “(1)” on the three parameters)
of the three elastic parameters and the four data types:

D̃PP (kg, 0;−kg, 0;ω) =− 1
4

(
1−

k2
g

ν2
g

)
ã(1)
ρ (−2νg)−

1
4

(
1 +

k2
g

ν2
g

)
ã(1)
γ (−2νg)

+
2k2

gβ
2
0

(ν2
g + k2

g)α2
0

ã(1)
µ (−2νg), (41)

D̃PS(νg, ηg) = −1
4

(
kg
νg

+
kg
ηg

)
ã(1)
ρ (−νg − ηg)−

β2
0

2ω2
kg(νg + ηg)

(
1−

k2
g

νgηg

)
ã(1)
µ (−νg − ηg), (42)

D̃SP (νg, ηg) =
1
4

(
kg
νg

+
kg
ηg

)
ã(1)
ρ (−νg − ηg) +

β2
0

2ω2
kg(νg + ηg)

(
1−

k2
g

νgηg

)
ã(1)
µ (−νg − ηg), (43)
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D̃SS(kg, ηg) = −1
4

(
1−

k2
g

η2
g

)
ã(1)
ρ (−2ηg)−

[
η2
g + k2

g

4η2
g

−
2k2

g

η2
g + k2

g

]
ã(1)
µ (−2ηg), (44)

where

ν2
g + k2

g =
ω2

α2
0

,

η2
g + k2

g =
ω2

β2
0

,

For the P-wave incidence case (see Fig. 1), using k2
g/ν

2
g = tan2 θ and k2

g/(ν
2
g + k2

g) = sin2 θ, where
θ is the P-wave incident angle, Eq. (41) becomes

D̃PP (νg, θ) = −1
4
(1− tan2 θ)ã(1)

ρ (−2νg)−
1
4
(1 + tan2 θ)ã(1)

γ (−2νg) +
2β2

0 sin2 θ

α2
0

ã(1)
µ (−2νg). (45)

In this case, when β0 = β1 = 0, Eq. (45) reduces to the acoustic two parameter case Eq. (7) in
Zhang and Weglein (2005) for zg = zs = 0.

D̃(qg, θ) = −ρ0

4

[
1

cos2 θ
α̃1(−2qg) + (1− tan2 θ)β̃1(−2qg)

]
, (46)

In Eq. (45), it seems straightforward that using the data at three angles to obtain the linear
inversion of aρ, aγ and aµ, and this is what we do in this paper. However, by doing this it requires
a whole new understanding of the definition of “the data”. This point has been discussed by
Weglein et al. (2007).

Direct non-linear inversion of 1D elastic medium

Writing Eq. (25) in matrix form:(
ĜP0 0
0 ĜS0

)(
V̂ PP

2 V̂ PS
2

V̂ SP
2 V̂ SS

2

)(
ĜP0 0
0 ĜS0

)
= −

(
ĜP0 0
0 ĜS0

)(
V̂ PP

1 V̂ PS
1

V̂ SP
1 V̂ SS

1

)(
ĜP0 0
0 ĜS0

)(
V̂ PP

1 V̂ PS
1

V̂ SP
1 V̂ SS

1

)(
ĜP0 0
0 ĜS0

)
, (47)

leads to four equations

ĜP0 V̂
PP
2 ĜP0 = −ĜP0 V̂ PP

1 ĜP0 V̂
PP
1 ĜP0 − ĜP0 V̂

PS
1 ĜS0 V̂

SP
1 ĜP0 , (48)

ĜP0 V̂
PS
2 ĜS0 = −ĜP0 V̂ PP

1 ĜP0 V̂
PS
1 ĜS0 − ĜP0 V̂

PS
1 ĜS0 V̂

SS
1 ĜS0 , (49)

ĜS0 V̂
SP
2 ĜP0 = −ĜS0 V̂ SP

1 ĜP0 V̂
PP
1 ĜP0 − ĜS0 V̂

SS
1 ĜS0 V̂

SP
1 ĜP0 , (50)

ĜS0 V̂
SS
2 ĜS0 = −ĜS0 V̂ SP

1 ĜP0 V̂
PS
1 ĜS0 − ĜS0 V̂

SS
1 ĜS0 V̂

SS
1 ĜS0 . (51)
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111 ,,

000 ,,

PP
T

PP
R

SP
R

SP
T

Incident P-wave

Figure 1: Response of incident compressional wave on a planar elastic interface. α0, β0 and ρ0 are the
compressional wave velocity, shear wave velocity and density of the upper layer, respectively; α1,
β1 and ρ1 denote the compressional wave velocity, shear wave velocity and density of the lower
layer. RPP , RSP , TPP and TSP denote the coefficients of the reflected compressional wave,
the reflected shear wave, the transmitted compressional wave and the transmitted shear wave,
respectively. (Foster et al., 1997)

Since V̂ PP
1 relates to D̂PP , V̂ PS

1 relates to D̂PS , and so on, the four components of the data will be
coupled in the non-linear elastic inversion. We cannot perform the direct non-linear inversion with-
out knowing all components of the data. As shown in Zhang and Weglein (2005) and this chapter,
when the work on the two parameter acoustic case is extended to the present three parameter elas-
tic case, it is not just simply adding one more parameter, but there are more issues involved. Even
for the linear case, the linear solutions found in (41) ∼ (44) are much more complicated than those
of the acoustic case. For instance, four different sets of linear parameter estimates are produced
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from each component of the data. Also, generally four distinct reflector mislocations arise from the
two reference velocities (P-wave velocity and S-wave velocity).

However, in some situations like the towed streamer case, we do not have all components of data
available. A particular non-linear approach to be presented in the next section, has been chosen
to side-step a portion of this complexity and address our typical lack of four components of elastic
data: using D̂PP as the fundamental data input, and perform a reduced form of non-linear elastic
inversion, concurrently asking: what beyond-linear value does this simpler framework add? We will
see from the numerical tests presented in the following section.

Only using D̂PP — a particular non-linear approach and the numerical tests

When assuming only D̂PP are available, first, we compute the linear solution for a(1)
ρ , a(1)

γ and a(1)
µ

from Eq. (41). Then, substituting the solution into the other three equations (42), (43) and (44),
we synthesize the other components of data — D̂PS , D̂SP and D̂SS . Finally, using the given D̂PP

and the synthesized data, we perform the non-linear elastic inversion, getting the following second
order (first term beyond linear) elastic inversion solution from Eq. (48),(

1− tan2 θ
)
a(2)
ρ (z) +

(
1 + tan2 θ

)
a(2)
γ (z)− 8b2 sin2 θa(2)

µ (z)

=− 1
2
(
tan4 θ − 1

) [
a(1)
γ (z)

]2
+

tan2 θ

cos2 θ
a(1)
γ (z)a(1)

ρ (z)

+
1
2

[(
1− tan4 θ

)
− 2
C + 1

(
1
C

)(
α2

0

β2
0

− 1
)

tan2 θ

cos2 θ

] [
a(1)
ρ (z)

]2
− 4b2

[
tan2 θ − 2

C + 1

(
1

2C

)(
α2

0

β2
0

− 1
)

tan4 θ

]
a(1)
ρ (z)a(1)

µ (z)

+ 2b4
(

tan2 θ − α2
0

β2
0

)[
2 sin2 θ − 2

C + 1
1
C

(
α2

0

β2
0

− 1
)

tan2 θ

] [
a(1)
µ (z)

]2
− 1

2

(
1

cos4 θ

)
a(1)′
γ (z)

∫ z

0
dz′
[
a(1)
γ

(
z′
)
− a(1)

ρ

(
z′
)]

− 1
2
(
1− tan4 θ

)
a(1)′
ρ (z)

∫ z

0
dz′
[
a(1)
γ

(
z′
)
− a(1)

ρ

(
z′
)]

+ 4b2 tan2 θa(1)′
µ (z)

∫ z

0
dz′
[
a(1)
γ

(
z′
)
− a(1)

ρ

(
z′
)]

+
2

C + 1
1
C

(
α2

0

β2
0

− 1
)

tan2 θ
(
tan2 θ − C

)
b2
∫ z

0
dz′a(1)

µ z

(
(C − 1) z′ + 2z

(C + 1)

)
a(1)
ρ

(
z′
)

− 2
C + 1

2
C

(
α2

0

β2
0

− 1
)

tan2 θ

(
tan2 θ − α2

0

β2
0

)
b4
∫ z

0
dz′a(1)

µ z

(
(C − 1) z′ + 2z

(C + 1)

)
a(1)
µ

(
z′
)

+
2

C + 1
1
C

(
α2

0

β2
0

− 1
)

tan2 θ
(
tan2 θ + C

)
b2
∫ z

0
dz′a(1)

µ

(
z′
)
a(1)
ρ z

(
(C − 1)z′ + 2z

(C + 1)

)
− 2
C + 1

1
2C

(
α2

0

β2
0

− 1
)

tan2 θ
(
tan2 θ + 1

) ∫ z

0
dz′a(1)

ρ

(
z′
)
a(1)
ρ z

(
(C − 1) z′ + 2z

(C + 1)

)
, (52)
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where a(1)
ρ z

(
(C−1)z′+2z

(C+1)

)
= d

[
a

(1)
ρ

(
(C−1)z′+2z

(C+1)

)]
/dz, b = β0

α0
and C = ηg

νg
=
√

1−b2 sin2 θ

b
√

1−sin2 θ
.

The first five terms on the right side of Eq. (52) are inversion terms; i.e., they contribute to
parameter predictions. The other terms on the right side of the equation are imaging terms. The
arguments for the remarks above are the same as in the acoustic case in (Zhang and Weglein,
2005). For one interface model, there is no imaging task. The only task is inversion. In this case,
all of the integration terms on the right side of Eq. (52) are zero, and only the first five terms
can be non-zero. Thus, we conclude that the integration terms (which care about duration) are
imaging terms, and the first five terms are inversion terms. Both the inversion and imaging terms
(especially the imaging terms) become much more complicated after the extension of acoustic case
(Zhang and Weglein, 2005) to elastic case. The integrand of the first three integral terms is the
first order approximation of the relative change in P-wave velocity. The derivatives a(1)′

γ , a(1)′
ρ and

a
(1)′
µ in front of those integrals are acting to correct the wrong locations caused by the inaccurate

reference P-wave velocity. The other four terms with integrals will be zero as β0 → 0 since in this
case C →∞.

In the following, we test this approach numerically.

For a single interface 1D elastic medium case, as shown in Fig. 1, the reflection coefficient RPP has
the following form (Foster et al., 1997)

RPP =
N

D
, (53)

where

N =− (1 + 2kx2)2b
√

1− c2x2
√

1− d2x2 − (1− a+ 2kx2)2bcdx2

+ (a− 2kx2)2cd
√

1− x2
√

1− b2x2

+ 4k2x2
√

1− x2
√

1− b2x2
√

1− c2x2
√

1− d2x2 − ad
√

1− b2x2
√

1− c2x2

+ abc
√

1− x2
√

1− d2x2, (54)

D =(1 + 2kx2)2b
√

1− c2x2
√

1− d2x2 + (1− a+ 2kx2)2bcdx2

+ (a− 2kx2)2cd
√

1− x2
√

1− b2x2

+ 4k2x2
√

1− x2
√

1− b2x2
√

1− c2x2
√

1− d2x2 + ad
√

1− b2x2
√

1− c2x2

+ abc
√

1− x2
√

1− d2x2, (55)

where a = ρ1/ρ0, b = β0/α0, c = α1/α0, d = β1/α0, k = ad2 − b2 and x = sin θ, and the subscripts
“0” and “1” denote the reference medium and actual medium respectively. Similar to the acoustic
case, using the analytic data (Clayton and Stolt, 1981; Weglein et al., 1986)

D̃PP (νg, θ) = RPP (θ)
e2iνga

4πiνg
, (56)
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where a is the depth of the interface. Substituting Eq.(56) into Eq.(45), Fourier transforming
Eq.(45) over 2νg, and fixing z > a and θ, we have

(1− tan2 θ)a(1)
ρ (z) + (1 + tan2 θ)a(1)

γ (z)− 8
β2

0

α2
0

sin2 θa(1)
µ (z) = 4RPP (θ)H(z − a). (57)

In this section, we numerically test the direct inversion approach on the following four models:

Model 1: shale (0.20 porosity) over oil sand (0.10 porosity). ρ0 = 2.32g/cm3, ρ1 = 2.46g/cm3;
α0 = 2627m/s, α1 = 4423m/s; β0 = 1245m/s, β1 = 2939m/s.

Model 2: shale over oil sand, 0.20 porosity. ρ0 = 2.32g/cm3, ρ1 = 2.27g/cm3; α0 = 2627m/s,
α1 = 3251m/s; β0 = 1245m/s, β1 = 2138m/s.

Model 3: shale (0.20 porosity) over oil sand (0.30 porosity). ρ0 = 2.32g/cm3, ρ1 = 2.08g/cm3;
α0 = 2627m/s, α1 = 2330m/s; β0 = 1245m/s, β1 = 1488m/s.

Model 4: oil sand over wet sand, 0.20 porosity. ρ0 = 2.27g/cm3, ρ1 = 2.32g/cm3; α0 = 3251m/s,
α1 = 3507m/s; β0 = 2138m/s, β1 = 2116m/s.

To test and compare methods, the top of sand reflection was modeled for oil sands with porosities
of 10, 20, and 30%. The three models used the same shale overburden. An oil/water contact model
was also constructed for the 20% porosity sand.

The low porosity model (10%) represents a deep, consolidated reservoir sand. Pore fluids have little
effect on the seismic response of the reservoir sand. It is difficult to distinguish oil sands from brine
sands on the basis of seismic response. Impedance of the sand is higher than impedance of the
shale.

The moderate porosity model (20%) represents deeper, compacted reservoirs. Pore fluids have a
large impact on seismic response, but the fluid effect is less than that of the high porosity case.
The overlying shale has high density compared to the reservoir sand, but the P-wave velocity of
the oil sand exceeds that of the shale. As a result, impedance contrast is reduced, and shear wave
information becomes more important for detecting the reservoir.

The high porosity model (30%) is typical of a weakly consolidated, shallow reservoir sand. Pore
fluids have a large impact on the seismic response. Density, P-wave velocity, and the α/β ratio
of the oil sand are lower than the density, P-wave velocity, and α/β ratio of the overlying shale.
Consequently, there is a significant decrease in density and P-wave bulk modulus and an increase
in shear modulus at the shale/oil sand interface.

The fourth model denotes an oil/water contact in a 20% porosity sand. At a fluid contact, both
density and P-wave velocity increase in going from the oil zone into the wet zone. Because pore
fluids have no affect on shear modulus, there is no change in shear modulus.

Using these four models, we can find the corresponding RPP from Eq. (53). Then, choosing three
different angles θ1, θ2 and θ3, we can get the linear solutions for a(1)

ρ , a(1)
γ and a(1)

µ from Eq. (57) ,
and then get the solutions for a(2)

ρ , a(2)
γ and a(2)

µ from Eq. (52).
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There are two plots in each figure. The left ones are the results for the first order, while the right
ones are the results for the first order plus the second order. The red lines denote the corresponding
actual values. In the figures, we illustrate the results corresponding to different sets of angles θ1
and θ2. The third angle θ3 is fixed at zero.

Figure 2: Model 1: shale (0.20 porosity) over oil sand (0.10 porosity). ρ0 = 2.32g/cm3, ρ1 =
2.46g/cm3;α0 = 2627m/s, α1 = 4423m/s;β0 = 1245m/s, β1 = 2939m/s. For this model, the
exact value of aρ is 0.06. The linear approximation a

(1)
ρ (left) and the sum of linear and first

non-linear a(1)
ρ + a

(2)
ρ (right).

The numerical results indicate that all the second order solutions provide improvements over the
linear solutions for all of the four models. When the second term is added to linear order, the
results become much closer to the corresponding exact values and the surfaces become flatter in
a larger range of angles. But the degrees of those improvements are different for different models.
How accurately D̂PP effectively synthesize D̂PS and D̂SP (as shown in Figs. 14 ∼ 17) determined
the degree of benefit provided by the non-linear elastic approach. All of the “predicted” values in
the figures are predicted using the linear results from D̂PP . And the “actual” values are calculated
from the Zoeppritz’ equations.

In principle, the elastic non-linear direct inversion in 2D requires all four components of data.
However, in this section we introduce an approach which requires only D̂PP and approximately
synthesizes the other required components. Based on this approach, the first direct non-linear
elastic inversion solution is derived. Value-added results are obtained from the non-linear inversion
terms beyond linear. Although D̂PP can itself provide useful non-linear direct inversion results,
the implication of this research is that further value would derive from actually measuring D̂PP ,
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Figure 3: Model 1: shale (0.20 porosity) over oil sand (0.10 porosity). ρ0 = 2.32g/cm3, ρ1 =
2.46g/cm3;α0 = 2627m/s, α1 = 4423m/s;β0 = 1245m/s, β1 = 2939m/s. For this model, the
exact value of aγ is 2.01. The linear approximation a

(1)
γ (left) and the sum of linear and first

non-linear a(1)
γ + a

(2)
γ (right).

D̂PS , D̂SP and D̂SS , as the method requires. In the following section, we give a consistent method
and solve all of the second order Eqs. (48), (49), (50) and (51) with all four components of data
available.
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Figure 4: Model 1: shale (0.20 porosity) over oil sand (0.10 porosity). ρ0 = 2.32g/cm3, ρ1 =
2.46g/cm3;α0 = 2627m/s, α1 = 4423m/s;β0 = 1245m/s, β1 = 2939m/s. For this model, the
exact value of aµ is 4.91. The linear approximation a

(1)
µ (left) and the sum of linear and first

non-linear a(1)
µ + a

(2)
µ (right).
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Figure 5: Model 2: shale over oil sand, 0.20 porosity. ρ0 = 2.32g/cm3, ρ1 = 2.27g/cm3;α0 =
2627m/s, α1 = 3251m/s;β0 = 1245m/s, β1 = 2138m/s. For this model, the exact value of aρ is
-0.022. The linear approximation a(1)

ρ (left) and the sum of linear and first non-linear a(1)
ρ + a

(2)
ρ

(right).
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Figure 6: Model 2: shale over oil sand, 0.20 porosity. ρ0 = 2.32g/cm3, ρ1 = 2.27g/cm3;α0 =
2627m/s, α1 = 3251m/s;β0 = 1245m/s, β1 = 2138m/s. For this model, the exact value of aγ is
0.498. The linear approximation a

(1)
γ (left) and the sum of linear and first non-linear a(1)

γ + a
(2)
γ

(right).
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Figure 7: Model 2: shale over oil sand, 0.20 porosity. ρ0 = 2.32g/cm3, ρ1 = 2.27g/cm3;α0 =
2627m/s, α1 = 3251m/s;β0 = 1245m/s, β1 = 2138m/s. For this model, the exact value of aµ is
1.89. The linear approximation a

(1)
µ (left) and the sum of linear and first non-linear a(1)

µ + a
(2)
µ

(right).
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Figure 8: Model 3: shale (0.20 porosity) over oil sand (0.30 porosity). ρ0 = 2.32g/cm3, ρ1 =
2.08g/cm3;α0 = 2627m/s, α1 = 2330m/s;β0 = 1245m/s, β1 = 1488m/s. For this model, the
exact value of aρ is -0.103. The linear approximation a

(1)
ρ (left) and the sum of linear and first

non-linear a(1)
ρ + a

(2)
ρ (right).

223



Direct non-linear inversion of multi-parameter 1D elastic media MOSRP07

Figure 9: Model 3: shale (0.20 porosity) over oil sand (0.30 porosity). ρ0 = 2.32g/cm3, ρ1 =
2.08g/cm3;α0 = 2627m/s, α1 = 2330m/s;β0 = 1245m/s, β1 = 1488m/s. For this model, the
exact value of aγ is -0.295. The linear approximation a

(1)
γ (left) and the sum of linear and first

non-linear a(1)
γ + a

(2)
γ (right).
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Figure 10: Model 3: shale (0.20 porosity) over oil sand (0.30 porosity). ρ0 = 2.32g/cm3, ρ1 =
2.08g/cm3;α0 = 2627m/s, α1 = 2330m/s;β0 = 1245m/s, β1 = 1488m/s. For this model, the
exact value of aµ is 0.281. The linear approximation a

(1)
µ (left) and the sum of linear and first

non-linear a(1)
µ + a

(2)
µ (right).

225



Direct non-linear inversion of multi-parameter 1D elastic media MOSRP07

Figure 11: Model 4: oil sand over wet sand, 0.20 porosity. ρ0 = 2.27g/cm3, ρ1 = 2.32g/cm3;α0 =
3251m/s, α1 = 3507m/s;β0 = 2138m/s, β1 = 2116m/s. For this model, the exact value of
aρ is 0.022. The linear approximation a

(1)
ρ (left) and the sum of linear and first non-linear

a
(1)
ρ + a

(2)
ρ (right).
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Figure 12: Model 4: oil sand over wet sand, 0.20 porosity. ρ0 = 2.27g/cm3, ρ1 = 2.32g/cm3;α0 =
3251m/s, α1 = 3507m/s;β0 = 2138m/s, β1 = 2116m/s. For this model, the exact value of
aγ is 0.19. The linear approximation a

(1)
γ (left) and the sum of linear and first non-linear

a
(1)
γ + a

(2)
γ (right).
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Figure 13: Model 4: oil sand over wet sand, 0.20 porosity. ρ0 = 2.27g/cm3, ρ1 = 2.32g/cm3;α0 =
3251m/s, α1 = 3507m/s;β0 = 2138m/s, β1 = 2116m/s. For this model, the exact value of
aµ is 0.001. The linear approximation a

(1)
µ (left) and the sum of linear and first non-linear

a
(1)
µ + a

(2)
µ (right).

228



Direct non-linear inversion of multi-parameter 1D elastic media MOSRP07

0 5 10 15 20 25 30 35
!0.4

!0.3

!0.2

!0.1

0

0.1

!

R
sp

shale (0.2 porosity) over oil sand (0.1 porosity).

Rsp!actual
Rsp!predicted

0 5 10 15 20 25 30 35
!0.4

!0.3

!0.2

!0.1

0

0.1

0.2

0.3

0.4

!

R
ps

shale (0.2 porosity) over oil sand (0.1 porosity).

Rps!actual
Rps!predicted

Figure 14: The comparison between the synthesized values and the actual values of Rsp (top) and Rps
(bottom) for Model 1: shale (0.20 porosity) over oil sand (0.10 porosity). ρ0 = 2.32g/cm3, ρ1 =
2.46g/cm3;α0 = 2627m/s, α1 = 4423m/s;β0 = 1245m/s, β1 = 2939m/s.
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Figure 15: The comparison between the synthesized values and the actual values of Rsp (top) and Rps
(bottom) for Model 2: shale over oil sand, 0.20 porosity. ρ0 = 2.32g/cm3, ρ1 = 2.27g/cm3;α0 =
2627m/s, α1 = 3251m/s;β0 = 1245m/s, β1 = 2138m/s.
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Figure 16: The comparison between the synthesized values and the actual values of Rsp (top) and Rps
(bottom) for Model 3: shale (0.20 porosity) over oil sand (0.30 porosity). ρ0 = 2.32g/cm3, ρ1 =
2.08g/cm3;α0 = 2627m/s, α1 = 2330m/s;β0 = 1245m/s, β1 = 1488m/s.
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Figure 17: The comparison between the synthesized values and the actual values of Rsp (top) and Rps (bot-
tom) for Model 4: oil sand over wet sand, 0.20 porosity. ρ0 = 2.27g/cm3, ρ1 = 2.32g/cm3;α0 =
3251m/s, α1 = 3507m/s;β0 = 2138m/s, β1 = 2116m/s.
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Using all four components of data — full direct non-linear elastic inversion

Using four components of data, one consistent method to solve for the second terms is, first, using
the linear solutions as shown in Eqs. (41), (42), (43) and (44), we can get the linear solution for
a

(1)
ρ , a(1)

γ and a(1)
µ in terms of D̂PP , D̂PS , D̂SP and D̂SS through the following way

a
(1)
ρ

a
(1)
γ

a
(1)
µ

 = (OTO)−1OT


D̂PP

D̂PS

D̂SP

D̂SS

 , (58)

where the matrix O is
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g
2
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g
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g
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g

2

kSS
g

2+ηSS
g

2

]


, (59)

and OT is the transpose of matrix O, the superscript −1 denotes the inverse of the matrix OTO.

Let the arguments of a(1)
ρ and a(1)

µ in Eqs. (41), (42), (43) and (44) equal, we need

−2νPPg = −νPSg − ηPSg = −νSPg − ηSPg = −2ηSSg ,

which leads to (please see details in Appendix A)

2
ω

α0
cos θPP =

ω

α0

√
1− α2

0

β2
0

sin2 θPS +
ω

β0
cos θPS =

ω

α0
cos θSP +

ω

β0

√
1− β2

0

α2
0

sin2 θSP

= 2
ω

β0
cos θSS .

From the expression above, given θPP , as shown in Fig. 18, we can find the corresponding angles
θPS , θSP and θSS which appear in matrix O

θPS = cos−1

[
4b2 cos2 θPP + 1− b2

4b cos θPP

]
,

θSP = cos−1

[
4b2 cos2 θPP − 1 + b2

4b2 cos θPP

]
,

θSS = cos−1
(
b cos θPP

)
,

where b = β0

α0
.
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Figure 18: Different incident angles.

Then, through the similar way, we can get the solution for a(2)
ρ , a(2)

γ and a
(2)
µ in terms of a(1)

ρ , a(1)
γ

and a(1)
µ a

(2)
ρ

a
(2)
γ

a
(2)
µ

 = (OTO)−1OTQ, (60)

where the matrix Q is in terms of a(1)
ρ , a(1)

γ and a(1)
µ .

Based on this idea, we get the following non-linear solutions for Eqs. (48), (49), (50) and (51)
respectively.

The form of the solution for Eq. (48), i.e.,

ĜP0 V̂
PP
2 ĜP0 = −ĜP0 V̂ PP

1 ĜP0 V̂
PP
1 ĜP0 − ĜP0 V̂

PS
1 ĜS0 V̂

SP
1 ĜP0 ,

is the same as Eq. (52). In the (ks, zs; kg, zg;ω) domain, we get the the other three solutions
respectively, for Eqs. (49), (50) and (51).
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The solution for Eq. (49), i.e.,
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(C + 1)z − (C − 1) z′

2

)
a(1)
ρ

(
z′
)

+
1

C + 1
a(1)′
ρ (z)

∫ z

0
dz′a(1)

µ (z′)
]

+
1

4ηgν2
g

(
β2

0

α2
0

Cν2
gkg + k3

g − 2k5
g

β2
0

ω2
− 2Ck3

gν
2
g

β2
0

ω2

)
×
[
1
2

∫ z

0
dz′a(1)

ρ z

(
(C + 1)z − (C − 1) z′

2

)
a(1)
µ

(
z′
)
− 1
C + 1

a(1)′
µ (z)

∫ z

0
dz′a(1)

ρ (z′)
]

+
1

4ηgν2
g

(
2
β2

0

α2
0

k3
g − 2k5

g

β2
0

ω2
− 2Ck3

gν
2
g

β2
0

ω2

)
×
[
1
2

∫ z

0
dz′a(1)

µ z

(
(C + 1)z − (C − 1) z′

2

)
a(1)
ρ

(
z′
)
− 1
C + 1

a(1)′
ρ (z)

∫ z

0
dz′a(1)

µ (z′)
]

− 1
4η2
gνg

(
k3
g − 2k5

g

β2
0

ω2
+
β2

0

α2
0

C3ν2
gkg − 2C3ν2

gk
3
g

β2
0

ω2

)
×
[

1
2C

∫ z

0
dz′a(1)

ρ z

(
(C + 1)z + (C − 1) z′

2C

)
a(1)
µ

(
z′
)

+
1

C + 1
a(1)′
µ (z)

∫ z

0
dz′a(1)

ρ (z′)
]

− 1
4η2
gνg

(
−2C3ν2

gk
3
g

β2
0

ω2
− 1

2
kg
ω2

β2
0

+ 2C2ν2
gk

3
g

β2
0

ω2

)
×
[

1
2C

∫ z

0
dz′a(1)

µ z

(
(C + 1)z + (C − 1) z′

2C

)
a(1)
ρ

(
z′
)

+
1

C + 1
a(1)′
ρ (z)

∫ z

0
dz′a(1)

µ (z′)
]

+
1

4ηgν2
g

(
Cν2

gkg − 2Cν2
gk

3
g

β2
0

ω2
+
β2

0

α2
0

k3
g − 2k5

g

β2
0

ω2

)
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×
[

1
2C

∫ z

0
dz′a(1)

ρ z

(
(C + 1)z + (C − 1) z′

2C

)
a(1)
µ

(
z′
)
− 1
C + 1

a(1)′
µ (z)

∫ z

0
dz′a(1)

ρ (z′)
]

+
1

4ηgν2
g

(
2C2ν2

gk
3
g

β2
0

ω2
− 2Cν2

gk
3
g

β2
0

ω2
− 1

2
kg
ω2

β2
0

)
×
[

1
2C

∫ z

0
dz′a(1)

µ z

(
(C + 1)z + (C − 1) z′

2C

)
a(1)
ρ

(
z′
)
− 1
C + 1

a(1)′
ρ (z)

∫ z

0
dz′a(1)

µ (z′)
]
,

the solution for Eq. (50), i.e.,

ĜS0 V̂
SP
2 ĜP0 = −ĜS0 V̂ SP

1 ĜP0 V̂
PP
1 ĜP0 − ĜS0 V̂

SS
1 ĜS0 V̂

SP
1 ĜP0 ,

is

1
4

(
kg
νg

+
kg
ηg

)
a(2)
ρ (z) +

β2
0

2ω2
kg (νg + ηg)

(
1−

k2
g

νgηg

)
a(2)
µ (z)

=
{
− 1

2ηgν2
g

[
2(C − 1)ν2

gk
5
g

β4
0

ω4
+
(

1− β2
0

α2
0

C

)
ν2
gk

3
g

β2
0

ω2

]
− β2

0

α2
0

k3
g

νg

β2
0

ω2
+

kg
2ηg

(
2k2

g

β2
0

ω2
− 1
)

+
(

1
2C

+
1

C + 1

)
1

4η2
gνg

(
6k3

g − 12k5
g

β2
0

ω2
− kg

ω2

β2
0

+ 8k7
g

β4
0

ω4
+ 8C3ν2

gk
5
g

β4
0

ω4

−4
β2

0

α2
0

C3ν2
gk

3
g

β2
0

ω2

)
−
(

1
2C

− 1
C + 1

)
1

4ηgν2
g

(
4
β2

0

α2
0

k3
g − 8k5

g

β2
0

ω2
− kg

ω2

α2
0

+ 2k3
g − 4Cν2

gk
3
g

β2
0

ω2
+ 8Cν2

gk
5
g

β4
0

ω4

−4
β2

0

α2
0

k5
g

β2
0

ω2
+ 8k7

g

β4
0

ω4

)}
a(1)
µ (z)a(1)

µ (z)

+
[(

1
2

+
1

C + 1

)
kg

8ηgν2
g

(
Ck2

g + ν2
g

)
−
(

1
2
− 1
C + 1

)
kg

8ηgν2
g

(
k2
g + Cν2

g

)
+
(

1
2C

+
1

C + 1

)
kg

8η2
gνg

(
C3ν2

g + k2
g

)
−
(

1
2C

− 1
C + 1

)
kg

8ηgν2
g

(
k2
g + Cν2

g

)]
a(1)
ρ (z)a(1)

ρ (z)

+
[(

1
2

+
1

C + 1

)
β2

0

α2
0

1
4ν3
g

kg
(
k2
g − ν2

g

)
+
(

1
2
− 1
C + 1

)
1

4ηgν2
g

(
kg
ω2

α2
0

− 2
β2

0

α2
0

k3
g

)
+
β2

0

α2
0

kg
2νg

]
a(1)
µ (z)a(1)

γ (z)

−

[(
1
2

+
1

C + 1

)
kg
(
k2
g + ν2

g

)
8ν3
g

−
(

1
2
− 1
C + 1

)
kg
(
k2
g + ν2

g

)
8ηgν2

g

]
a(1)
ρ (z)a(1)

γ (z)

−
[(

1
2

+
1

C + 1

)
1

4ηgν2
g

(
2ν2
gk

3
g

β2
0

ω2
− ν2

gkg + 2Ck5
g

β2
0

ω2
− β2

0

α2
0

Ck3
g

)
−
(

1
2
− 1
C + 1

)
1

4ηgν2
g

(
2Cν2

gk
3
g

β2
0

ω2
− β2

0

α2
0

Cν2
gkg + 2k5

g

β2
0

ω2
− k3

g

)
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−
(

1
2C

+
1

C + 1

)
1

4η2
gνg

(
3k3

g +
β2

0

α2
0

C3ν2
gkg − 4C3ν2

gk
3
g

β2
0

ω2
− 4k5

g

β2
0

ω2
− 1

2
kg
ω2

β2
0

)
+
(

1
2C

− 1
C + 1

)
1

4ηgν2
g

(
Cν2

gkg + 2k3
g +

β2
0

α2
0

k3
g − 4k5

g

β2
0

ω2
− 4Cν2

gk
3
g

β2
0

ω2
− 1

2
kg
ω2

β2
0

)
−(C − 1)

k3
g

2ηg
β2

0

ω2

]
a(1)
ρ (z)a(1)

µ (z)

− 1
2ηgν2

g

[
2(C − 1)ν2

gk
5
g

β4
0

ω4
+
(

1− β2
0

α2
0

C

)
ν2
gk

3
g

β2
0

ω2

]
×
∫ z

0
dz′a(1)

µ z

(
(C + 1)z − (C − 1) z′

2

)
a(1)
µ

(
z′
)

+
1

4η2
gνg

(
6k3

g − 12k5
g

β2
0

ω2
− kg

ω2

β2
0

+ 8k7
g

β4
0

ω4
+ 8C3ν2

gk
5
g

β4
0

ω4
− 4

β2
0

α2
0

C3ν2
gk

3
g

β2
0

ω2

)
×
[

1
2C

∫ z

0
dz′a(1)

µ z

(
(C + 1)z + (C − 1) z′

2C

)
a(1)
µ

(
z′
)

+
1

C + 1
a(1)′
µ (z)

∫ z

0
dz′a(1)

µ (z′)
]

− 1
4ηgν2

g

(
4
β2

0

α2
0

k3
g − 8k5

g

β2
0

ω2
− kg

ω2

α2
0

+ 2k3
g − 4Cν2

gk
3
g

β2
0

ω2
+ 8Cν2

gk
5
g

β4
0

ω4
− 4

β2
0

α2
0

k5
g

β2
0

ω2
+ 8k7

g

β4
0

ω4

)
×
[

1
2C

∫ z

0
dz′a(1)

µ z

(
(C + 1)z + (C − 1) z′

2C

)
a(1)
µ

(
z′
)
− 1
C + 1

a(1)′
µ (z)

∫ z

0
dz′a(1)

µ (z′)
]

+
kg
(
Ck2

g + ν2
g

)
8ηgν2

g

[
1
2

∫ z

0
dz′a(1)

ρ z

(
(C + 1)z − (C − 1) z′

2

)
a(1)
ρ

(
z′
)

+
1

C + 1
a(1)′
ρ (z)

∫ z

0
dz′a(1)

ρ (z′)
]

−
kg
(
k2
g + Cν2

g

)
8ηgν2

g

[
1
2

∫ z

0
dz′a(1)

ρ z

(
(C + 1)z − (C − 1) z′

2

)
a(1)
ρ

(
z′
)

− 1
C + 1

a(1)′
ρ (z)

∫ z

0
dz′a(1)

ρ (z′)
]

+
C3kgν

2
g + k3

g

8η2
gνg

[
1

2C

∫ z

0
dz′a(1)

ρ z

(
(C + 1)z + (C − 1) z′

2C

)
a(1)
ρ

(
z′
)

+
1

C + 1
a(1)′
ρ (z)

∫ z

0
dz′a(1)

ρ (z′)
]

−
kg
(
k2
g + Cν2

g

)
8ηgν2

g

[
1

2C

∫ z

0
dz′a(1)

ρ z

(
(C + 1)z + (C − 1) z′

2C

)
a(1)
ρ

(
z′
)

− 1
C + 1

a(1)′
ρ (z)

∫ z

0
dz′a(1)

ρ (z′)
]

+
β2

0

α2
0

kg
(
k2
g − ν2

g

)
4ν3
g

[
1
2

∫ z

0
dz′a(1)

γ z

(
(C + 1)z − (C − 1) z′

2

)
a(1)
µ

(
z′
)
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+
1

C + 1
a(1)′
µ (z)

∫ z

0
dz′a(1)

γ (z′)
]

+
1

4ηgν2
g

(
kg
ω2

α2
0

− 2
β2

0

α2
0

k3
g

)[
1
2

∫ z

0
dz′a(1)

γ z

(
(C + 1)z − (C − 1) z′

2

)
a(1)
µ

(
z′
)

− 1
C + 1

a(1)′
µ (z)

∫ z

0
dz′a(1)

γ (z′)
]

−
kg
(
k2
g + ν2

g

)
8ν3
g

[
1
2

∫ z

0
dz′a(1)

γ z

(
(C + 1)z − (C − 1) z′

2

)
a(1)
ρ

(
z′
)

+
1

C + 1
a(1)′
ρ (z)

∫ z

0
dz′a(1)

γ (z′)
]

+
kg
(
k2
g + ν2

g

)
8ηgν2

g

[
1
2

∫ z

0
dz′a(1)

γ z

(
(C + 1)z − (C − 1) z′

2

)
a(1)
ρ

(
z′
)

− 1
C + 1

a(1)′
ρ (z)

∫ z

0
dz′a(1)

γ (z′)
]

− 1
4ηgν2

g

(
2ν2
gk

3
g

β2
0

ω2
− ν2

gkg + 2Ck5
g

β2
0

ω2
− β2

0

α2
0

Ck3
g

)
×
[
1
2

∫ z

0
dz′a(1)

ρ z

(
(C + 1)z − (C − 1) z′

2

)
a(1)
µ

(
z′
)

+
1

C + 1
a(1)′
µ (z)

∫ z

0
dz′a(1)

ρ (z′)
]

+
1

4ηgν2
g

(
2Cν2

gk
3
g

β2
0

ω2
− β2

0

α2
0

Cν2
gkg + 2k5

g

β2
0

ω2
− k3

g

)
×
[
1
2

∫ z

0
dz′a(1)

ρ z

(
(C + 1)z − (C − 1) z′

2

)
a(1)
µ

(
z′
)
− 1
C + 1

a(1)′
µ (z)

∫ z

0
dz′a(1)

ρ (z′)
]

+ (C − 1)
k3
g

2ηg
β2

0

ω2

∫ z

0
dz′a(1)

µ z

(
(C + 1)z − (C − 1) z′

2

)
a(1)
ρ

(
z′
)

− 1
4η2
gνg

(
−2k3

g + 2C3ν2
gk

3
g

β2
0

ω2
+ 2k5

g

β2
0

ω2
+

1
2
kg
ω2

β2
0

)
×
[

1
2C

∫ z

0
dz′a(1)

µ z

(
(C + 1)z + (C − 1) z′

2C

)
a(1)
ρ

(
z′
)

+
1

C + 1
a(1)′
ρ (z)

∫ z

0
dz′a(1)

µ (z′)
]

− 1
4η2
gνg

(
−k3

g −
β2

0

α2
0

C3ν2
gkg + 2C3ν2

gk
3
g

β2
0

ω2
+ 2k5

g

β2
0

ω2

)
×
[

1
2C

∫ z

0
dz′a(1)

ρ z

(
(C + 1)z + (C − 1) z′

2C

)
a(1)
µ

(
z′
)

+
1

C + 1
a(1)′
µ (z)

∫ z

0
dz′a(1)

ρ (z′)
]

− 1
4ηgν2

g

(
2k3

g − 2k5
g

β2
0

ω2
− 2Cν2

gk
3
g

β2
0

ω2
− 1

2
kg
ω2

β2
0

)
×
[

1
2C

∫ z

0
dz′a(1)

µ z

(
(C + 1)z + (C − 1) z′

2C

)
a(1)
ρ

(
z′
)
− 1
C + 1

a(1)′
ρ (z)

∫ z

0
dz′a(1)

µ (z′)
]

− 1
4ηgν2

g

(
Cν2

gkg +
β2

0

α2
0

k3
g − 2k5

g

β2
0

ω2
− 2Cν2

gk
3
g

β2
0

ω2

)
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×
[

1
2C

∫ z

0
dz′a(1)

ρ z

(
(C + 1)z + (C − 1) z′

2C

)
a(1)
µ

(
z′
)
− 1
C + 1

a(1)′
µ (z)

∫ z

0
dz′a(1)

ρ (z′)
]
,

and the solution for Eq. (??), i.e.,

ĜS0 V̂
SS
2 ĜS0 = −ĜS0 V̂ SP

1 ĜP0 V̂
PS
1 ĜS0 − ĜS0 V̂

SS
1 ĜS0 V̂

SS
1 ĜS0 ,

is

− 1
4

(
1−

k2
g

η2
g

)
a(2)
ρ (z)−

[
k2
g + η2

g

4η2
g

−
2k2

g

k2
g + η2

g

]
a(2)
µ (z)

=−
{

1
8η4
g

(
8k2

gη
2
g −

ω4

β4
0

)
− 1

4η2
g

(
ω2

β2
0

− 4
β2

0

ω2
η2
gk

2
g

)
− β2

0

α2
0

k2
g

β2
0

ω2

+
1

η2
g(C + 1)

[
k2
g

(
β4

0

α4
0

C2 − 1
)
− 4k4

g

β2
0

ω2

(
β2

0

α2
0

C2 − 1
)

+ 4k6
g

β4
0

ω4
(C2 − 1)

]}
a(1)
µ (z)a(1)

µ (z)

−
[

1
8η4
g

(
η4
g − k4

g

)
+

1
4η2
g

k2
g(C − 1)

]
a(1)
ρ (z)a(1)

ρ (z)

+
{
k2
g

η2
g

− 1
η2
g(C + 1)

[
k2
g

(
β2

0

α2
0

C2 − 1
)
− 2

β2
0

ω2
k4
g

(
C2 − 1

)]}
a(1)
µ (z)a(1)

ρ (z)

− 1
8η4
g

(
8k2

gη
2
g −

ω4

β4
0

)
a(1)′
µ (z)

∫ z

0
dz′a(1)

µ (z′)

− 1
8η4
g

(
η4
g − k4

g

)
a(1)′
ρ (z)

∫ z

0
dz′a(1)

ρ (z′)

+
k2
g

2η2
g

[
a(1)′
µ (z)

∫ z

0
dz′a(1)

ρ (z′) + a(1)′
ρ (z)

∫ z

0
dz′a(1)

µ (z′)
]

− 1
8η2
g

(
η2
g − 3k2

g

) [
a(1)′
µ (z)

∫ z

0
dz′a(1)

ρ (z′)− a(1)′
ρ (z)

∫ z

0
dz′a(1)

µ (z′)
]

− 1
η2
g(C + 1)

[
k2
g

(
β4

0

α4
0

C2 − 1
)
− 4k4

g

β2
0

ω2

(
β2

0

α2
0

C2 − 1
)

+ 4k6
g

β4
0

ω4
(C2 − 1)

]
×
∫ z

0
dz′a(1)

µ z

(
2Cz − (C − 1) z′

(C + 1)

)
a(1)
µ

(
z′
)

− 1
4η2
g

k2
g(C − 1)

∫ z

0
dz′a(1)

ρ z

(
2Cz − (C − 1) z′

(C + 1)

)
a(1)
ρ

(
z′
)

− 1
2η2
g(C + 1)

[
k2
g

(
β2

0

α2
0

C2 − 1
)
− 2

β2
0

ω2
k4
g

(
C2 − 1

)]
×
[∫ z

0
dz′a(1)

µ z

(
2Cz − (C − 1) z′

(C + 1)

)
a(1)
ρ

(
z′
)

+
∫ z

0
dz′a(1)

ρ z

(
2Cz − (C − 1) z′

(C + 1)

)
a(1)
µ

(
z′
)]

+
Ck2

g

2(C + 1)η2
g

(
β2

0

α2
0

− 1
)

×
[∫ z

0
dz′a(1)

µ z

(
2Cz − (C − 1) z′

(C + 1)

)
a(1)
ρ

(
z′
)
−
∫ z

0
dz′a(1)

ρ z

(
2Cz − (C − 1) z′

(C + 1)

)
a(1)
µ

(
z′
)]
,
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where ηg = Cνg, k
2
g + ν2

g = ω2/α2
0 and k2

g + η2
g = ω2/β2

0 .

After we solve all (four) of the second order equations, future research is to perform numerical tests
with all four components of data available.

Conclusion

In this paper, a framework and algorithm have been developed for more accurate target identi-
fication. The elastic non-linear inversion requires all four components of data. In this paper we
analyzed an algorithm which inputs only D̂PP . Although D̂PP can itself provide useful non-linear
direct inversion results, when we use D̂PP to synthesize the other components, the implication of
this research is that further value would derive from actually measuring D̂PP , D̂PS , D̂SP and D̂SS ,
as the method requires. Pitfalls of indirect methods that use assumed aligned objectives, while
sounding eminently persuasive and reasonable, can have a serious flaw in violating the fundamental
physics behind non-linear inversion, and can never sense its problem, in any clear and definitive
manner. There are very serious conceptual and practical consequences to that disconnect. For the
case that all four components of data available, we also provided a consistent method to solve for
all of the second terms. Further tests with the actual four components of data (in a 2-D world) are
underway, to compare with D̂PP and synthesized data components.
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Appendix A

In this Appendix, we give the different coefficients before every linear quantity (a(1)
γ , a

(1)
ρ , a

(1)
µ ) —

different incidence angle θ. For P to P case, we have

kPPg =
ω

α0
sin θPP ,

νPPg =
ω

α0
cos θPP ,

For S to P case,

kPSg =
ω

β0
sin θPS ,

νPSg =
ω

α0

√
1− α2

0

β2
0

sin2 θPS
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ηPSg =
ω

β0
cos θPS ,

For P to S case,

kSPg =
ω

α0
sin θSP ,

νSPg =
ω

α0
cos θSP

ηSPg =
ω

β0

√
1− β2

0

α2
0

sin2 θSP ,

For S to S case,

kSSg =
ω

β0
sin θSS ,

ηSSg =
ω

β0
cos θSS ,

Let the arguments of a(1)
ρ and a(1)

µ in Eqs. (41), (42), (43) and (44) equal, we need

−2νPPg = −νPSg − ηPSg = −νSPg − ηSPg = −2ηSSg ,

which leads to

2
ω

α0
cos θPP =

ω

α0

√
1− α2

0

β2
0

sin2 θPS +
ω

β0
cos θPS

=
ω

α0
cos θSP +

ω

β0

√
1− β2

0

α2
0

sin2 θSP = 2
ω

β0
cos θSS ,

From the expression above, given θPP , we can find the corresponding θPS , θSP and θSS .

θPS = cos−1

[
4b2 cos2 θPP + 1− b2

4b cos θPP

]
,

θSP = cos−1

[
4b2 cos2 θPP − 1 + b2

4b2 cos θPP

]
,

θSS = cos−1
(
b cos θPP

)
,

where b = β0

α0
.
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Weglein, A. B., F. V. Araújo, P. M. Carvalho, R. H. Stolt, K. H. Matson, R. T. Coates, D. Corrigan,
D. J. Foster, S. A. Shaw, and H. Zhang. “Inverse scattering series and seismic exploration.”
Inverse Problems 19 (2003): R27–R83.

Weglein, A. B., D. J. Foster, K. H. Matson, S. A. Shaw, P. M. Carvalho, and D. Corrigan. “Predict-
ing the correct spatial location of reflectors without knowing or determining the precise medium
and wave velocity: initial concept, algorithm and analytic and numerical example.” Journal of
Seismic Exploration 10 (2002): 367–382.

Weglein, A. B., F. A. Gasparotto, P. M. Carvalho, and R. H. Stolt. “An inverse-scattering series
method for attenuating multiples in seismic reflection data.” Geophysics 62 (1997): 1975–1989.

Weglein, A. B. and R. H. Stolt. 1992 “Approaches on linear and non-linear migration-inversion.”.
Personal Communication.

Weglein, A. B., P. B. Violette, and T. H. Keho. “Using multiparameter Born theory to obtain
certain exact multiparameter inversion goals.” Geophysics 51 (1986): 1069–1074.

Zhang, H. and A. B. Weglein. “The inverse scattering series for tasks associated with primaries:
Depth imaging and direct non-linear inversion of 1D variable velocity and density acoustic media.”
75th Annual Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts. . Soc. Expl. Geophys.,
2005. 1705–1708.

245



Towards a comprehensive inverse scattering framework for Q-compensation

K. A. Innanen and J. E. Lira

Abstract

A reasonable definition of Q-compensation is the estimation of an output (surface-recorded)
primary data set that is identical to a given input, except that all absorptive propagation effects
are absent. Inverse scattering provides a framework upon which to develop a variety of direct
data-processing schemes fitting this definition. The framework is comprehensive in the sense
that possible schemes deriving from it range from being highly non-linear and requiring no prior
knowledge of the Q values or structure of the medium (and which as a result attempts to avoid
the problems associated with standard Q processing when the incorrect Q value is used), to
being linear but requiring a precise prior knowledge of the medium Q. Both are interpretable as
being mappings to and from model space, with the map to model space steeped in absorptive-
dispersive wave mathematics, and the map back being essentially acoustic. The algorithms are
straightforwardly derived and synthetically exemplified for layered absorptive-dispersvie media.

1 Introduction

Consider a reflection seismic data set consisting of primaries that have been altered because of Q.
A reasonable definition of Q-compensation is the estimation of a further data set that is identi-
cal to the input, except that all absorptive propagation effects are absent. Inverse scattering is a
framework within which numerous algorithms that fit this definition, and that are based on a fully
multidimensional and multi-parameter wave theory, can be developed. In this paper we present
two examples.

The two examples are the two ends of a range of possible Q-compensation schemes derivable from
within inverse scattering. (We say we are moving towards a “comprehensive framework” for Q-
compensation because in principle it should be possible to derive an algorithm that sits anywhere
in this range.) On one end are algorithms that are linear, and proceed with an accurate prior
knowledge of the medium, including its Q structure. On the other are algorithms that are highly
nonlinear, and proceed with no prior knowledge of the medium. The ultimate research aim would
be to provide complete freedom to choose where one sits on this range when designing or using an
algorithm.

We will take great pains to cast Q-compensation as a separate, independent step within the seismic
processing chain. For instance, after non-linear absorptive-dispersive inversion equations are gen-
erated (which construct the depth profiles of P-wave velocity and Q), taking us, as it were, to the
end of the processing chain, we proceed to suppress much of their behavior, and then map back to
data space—apparently retreating to an earlier point on the chain. The reason is practical. As we
shall see, correction for Q is treated in inverse scattering in a way highly coupled to both imaging,
or reflector location, and parameter estimation. In fact, the raw equations attempt to accomplish

246



Towards a comprehensive inverse scattering framework for Q-compensation MOSRP07

all of these tasks simultaneously. But, since in seismic processing the word adequate is subjective,
a simple medium might be adequate to explain attenuation in the data events, and at the same
time grossly inadequate to explain their phase and arrival times. It follows that we could easily
find ourselves in a situation where the coupled algorithm, which images and compensates for Q all
at once, does the latter task adequately and the former inadequately. To avoid situations like this,
we define as our goal a Q-compensation algorithm that sits alone.

This current paper represents the progression, in an ongoing research project to determine the im-
pact of absorption on linear and non-linear inverse scattering (Innanen and Weglein, 2003, 2005),
to candidate algorithms suitable for a 2-parameter absorptive-dispersive medium exhibiting arbi-
trary variability in depth. The linear prototype algorithm is based on inversion equations with
absorptive reference media (Innanen et al., 2008). The nonlinear algorithm has been discussed in
its earlier incarnations in MOSRP05. Because it operates on primaries, and corrects for problems
whose specific nature is determined by the duration of a wave in perturbed parts of the medium, the
non-linear algorithm shares much with concurrent and ongoing direct non-linear imaging (Weglein
et al., 2001; Shaw et al., 2004; Shaw, 2005; Liu et al., 2006; Liu, 2006) and inversion (Zhang and
Weglein, 2005; Zhang, 2006) research.

The paper is organized as follows. In the remainder of this introductory section, we will review
existing Q compensation methods, and comment on how well they fit into the parochial definition
we have laid out in the first paragraph of the paper. We then introduce the various basic scattering
quantities appropriate for absorptive-dispersive reference and actual media. In the following two
sections we will present the linear and non-linear Q-compensation algorithms respectively, making
regular use of the Appendices. In each case we provide simple synthetic examples of the algorithms.

Q-compensation and the seismic inverse problem

Many existing inverse Q filtering techniques (e.g., Clarke, 1968; Bickel and Natarajan, 1985; Harg-
reaves, 1992; Bickel, 1993; Duren and Trantham, 1997; Margrave, 1998; Wang, 2002, 2003; Zhang
and Ulrych, 2007; Wang, 2006; Baan, 2008) fit well with the above definition. Generally, their out-
put is indeed data-like, the result of a non-stationary deconvolution of the input data, and therefore
identifiable as some form of reflectivity series in time. However, as one moves towards methods that
are based on multidimensional and multiparameter wave theory, which we wish to do, it becomes
less straightforward to arrange for the output to be data-like. At the opposite end of the con-
tinuum are absorptive-dispersive waveform inversion methods (e.g., Dahl and Ursin, 1992; Causse
et al., 1999; Hicks and Pratt, 2001; Dasios et al., 2004), in which spatial distributions of medium
parameters (including attenuation parameters) are estimated. These methods are wave-theoretic,
and since, in applying them, attenuated data are used to determine sharp medium variations, some
de facto form of Q-compensation is certainly taking place; but the output is far from data-like.
We seek something that retains the data-to-data mapping sensibility of the deconvolution-type
methods, while basing itself in full multidimensional - multiparameter wave theory. Migration or
downward continuation schemes that incorporate attenuation (Mittet et al., 1995; Ribodetti and
Virieux, 1998; Song and Innanen, 2002; Wang, 2003; Mittet, 2007) accomplish this to a limited
degree: the image output (e.g., imaged wavefield-at-depth) has a slight data-like aspect, and a
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wave-theoretic version of Q-compensation takes place in constructing it. But in designing direct
Q compensation algorithms from the inverse scattering formalism, we identify most closely with
the method of Hargreaves and Calvert (1991), which is based on multidimensional wave theory
and returns a Q-compensated, non-imaged, pre-stack data set, and so falls closest to our parochial
definition.

Absorptive-dispersive scattering quantities

Here we set out the scattering quantities to be used in both of the Q-compensation approaches
discussed in this paper. Two fundamentally different sets of perturbations are required for the
cases of absorptive and non-absorptive reference media.

Case I: Green’s functions and perturbations for non-absorptive reference media

For the case of a non-absorptive reference medium, the Green’s functions for a source at xs and a
receiver at x at angular frequency ω will satisfy[

∇2 +
ω2

c20

]
G0(x|xs;ω) = δ(x− xs), (1)

that is, be solutions for a homogeneous, constant density acoustic medium characterized by wavespeed
c0. The solution to equation (1) in 1D for a source at zs and a receiver at zg is

G0(zg|zs;ω) =
e
i ω

c0
|zg−zs|

i2k
, (2)

whereas in 2D with similar nomenclature we have instead

G0(xg, zg|x, z;ω) =
1
2π

∫ ∞

−∞
dk′xe

ik′x(xg−x) e
iq′|zg−z|

i2q′

G0(x, z|xs, zs;ω) =
1
2π

∫ ∞

−∞
dk′xe

ik′x(x−xs) e
iq′|z−zs|

i2q′
,

where q′2 = ω2/c20 − k′2x . Finally, Fourier transforming over xg and xs within G0(xg, zg|x, z;ω) and
G0(x, z|xs, zs;ω) respectively produces the useful form:

G0(kg, zg|x, z;ω) = e−ikgx e
iqg |zg−z|

i2qg
,

G0(x, z|ks, zs;ω) = eiksx e
iqs|z−zs|

i2qs
,

(3)

where q2g = ω2/c20−k2
g and q2s = ω2/c20−k2

s . We adopt the Fourier transform conventions of Clayton
and Stolt (1981). We define wave propagation in the actual medium as satisfying a straightforward
two parameter A-D wave model, in which the Green’s function satisfies[

∇2 +K2
]
G(x|xs;K) = δ(x− xs), (4)
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where

K ≡ ω

c(x)

[
1 +

F (ω)
Q(x)

]
, (5)

and, importantly, where we have specifically extracted the function

F (ω) =
i

2
− 1
π

ln
(
ω

ωr

)
. (6)

The reference frequency ωr is a component of the A-D model, which in our numerical studies we
choose to be the highest frequency in a given experiment. The nearly-constant Q model embodied
in equations (5) and (6) is consistent with those described by Aki and Richards (2002), and with
that of Kjartansson (1979) over a reasonable seismic bandwidth. The function F (ω) has two
terms, one imaginary and one real and frequency-dependent; the former instills absorptive effects
(i.e., attenuation proper) in the expression for a propagating wavefield, while the latter instills
dispersive effects. Notice that the form of the A-D model has permitted us to separate out the
space dependence of Q(x) from the frequency-dependence produced by the dispersion, which we
have placed in the function F (ω). The former will be treated as an unknown in the inverse scattering
problem, and the latter as known. Solving for an attenuation parameter with unprescribed variation
in both space and frequency does not appear to be tractable at present. Continuing in operator
form (e.g., Weglein et al. (2003)), the reference wave equation and the actual wave equation, both
based on equation (4) may be expressed as

L0G0 = I, LG = I, (7)

respectively, where I is the operator form of the delta function source in equation (4). We then
define perturbation and scattered field quantities as

V = L0 − L, ψ = G−G0, (8)

respectively, after which the Scattering equation and forward scattering series arises,

ψ = G0VG,

= G0VG0 + G0VG0VG0 + G0VG0VG0VG0 + ... .

The perturbation operator V is the difference between two wave operators of the type in equation
(4), a reference and an actual, namely:

V = L0 − L

=
[
∇2 + k2

]
−
[
∇2 +K2

]
=
ω2

c20
− ω2

c2(x)

[
1 +

F (ω)
Q(x)

]2

≈ ω2

c20
− ω2

c2(x)

[
1 +

2F (ω)
Q(x)

]
,

249



Towards a comprehensive inverse scattering framework for Q-compensation MOSRP07

neglecting 1/Q2, a step that is already consistent with the approximations made in the development
of the nearly-constant Q model (Kjartansson, 1979). We proceed by defining two dimensionless
perturbation quantities:

α(x) = 1− c20(x)
c2(x)

,

β(x) =
1

Q(x)
,

such that

V ≈ ω2

c20
− ω2

c20
[1− α(x)] [1 + 2F (ω)β(x)]

≈ ω2

c20
[α(x)− 2F (ω)β(x)] .

Equation (9) further neglects the term containing the product αβ. The rationale for this is math-
ematical convenience; under many circumstances it is a good approximation, but we must expect
it to act as a source of error given very large wavespeed contrasts. Within the inverse scattering
series, the component of this perturbation that is linear in the data will then be written

V1 ≡
ω2

c20
[α1(x)− 2F (ω)β1(x)] . (9)

We emphasize that the perturbations appropriate for the absorptive reference medium case do not
reduce to this form as the reference absorption parameter vanishes.

Case II: Green’s functions and perturbations for absorptive reference media

The Green’s functions for homogeneous absorptive reference media look very similar to the non-
absorptive case; they do behave quite differently, however. We again make particular use of

G0(xg, zg, x′, z′, ω) =
1
2π

∫
dkge

ikg(xg−x′) e
iqg |zg−z′|

i2qg
,

G0(x′, z′, ks, zs, ω) = eiksxs
eiqs|z−zs|

i2qs
,

(10)

however, now the depth wavenumbers are altered: q2g = K2−k2
g , etc., andK = ω

c0

[
1 + i

2Q0
− 1

πQ0
log
(
ω
ωr

)]
as per Aki and Richards (2002). The scattering potential V is, as before, the difference between
reference and actual absorptive differential operators. Defining F (ω) = i/2−1/π log

(
ω
ωr

)
, we have

V =
ω2

c20

[
1 +

F (ω)
Q0

]2

− ω2

c2(x)

[
1 +

F (ω)
Q(x)

]2

. (11)
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We next express the two medium variables, c and Q, in a perturbational form that is fundamentally
different from the non-absorptive case. We define

α(z) ≡ 1− c20
c2(x)

β(z) ≡ 1− Q0

Q(x)
.

(12)

Noting (1) that even if the reference medium is highly attenuative, e.g., Q0 = 10, the terms in 1/Q2
0

will be an order of magnitude smaller than those in 1/Q0, and (2) that terms in the product αβ
are generally small also, neglecting smaller terms, we have, upon substitution,

V ≈ω
2

c20

[
1 + 2

F (ω)
Q0

]
α(x) + 2

ω2

c20

F (ω)
Q0

β(x). (13)

Again anticipating application of the inverse scattering series (Weglein et al., 2003), the component
of V that is linear in the data, V1, is straightforwardly expressed in terms of the components of α
and β that are themselves also linear in the data, α1 and β1, as

V1 ≡
ω2

c20

[
1 + 2

F (ω)
Q0

]
α1(x) + 2

ω2

c20

F (ω)
Q0

β1(x). (14)

We emphasize that the perturbation for the non-absorptive reference medium is not produced by
letting Q0 →∞ in equation (13).

2 Direct linear Q-compensation

Here we derive and exemplify a prototype direct linear Q compensation procedure. In terms of
the range of potential inverse scattering Q-compensation algorithms, it sits at the end of the range
at which we assume exact prior knowledge of Q. It is similar in requirements and capability to
the method of Hargreaves and Calvert (1991), with the difference that the extension to a laterally-
and vertically-varying Q model (an ongoing part of the research) will follow naturally from this
derivation.

Approach

The linear Q compensation algorithm is derived in analogy to “migration-demigration” style pro-
cessing algorithms, in which, through a well-defined set of differences between the migration and
de-migration components, some specific goal of data processing occurs (e.g., Trad, 2003). In our
case, we will (1) form a linear inverse scattering problem involving a homogeneous 2-parameter
absorptive-dispersive reference medium, and (2) after solving it, map back to data space using a
non-absorptive reference medium.
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Linear Q-compensation

We begin with a set of linear inverse scattering data equations and a prescription for their solution
(Innanen et al., 2008), which will require the forms for the absorptive reference Green’s functions
and an appropriate scattering potential derived in Case II in the introduction. We assume for
present convenience (1) that the linear component of the scattering potential is a function of depth
z only, and (2) we have line sources occupying the entire plane zs, and a single line receiver at (xg,
zg). Upon substitution of equations (10) and (14) into the first equation of the inverse scattering
series, viz.

D′(xg, zg, ks, zs, ω) = S(ω)
∫ ∫

dx′dz′G0(xg, zg, x′, z′, ω)V1(z′)G0(x′, z′, ks, zs, ω), (15)

where S is the (known) source wavelet, we have

D(ks, ω) = α1(−2qs) +W (ω)β1(−2qs), (16)

where W (ω) = 2F (ω)
Q0

(
1 + 2F (ω)

Q0

)−1
, F (ω) = i/2− 1/π log(ω/ωr), ωr is a reference frequency, and

D is related to D′ by

D(ks, ω) = −4S−1(ω)
(

1 +
2F (ω)
Q0

)−1 q2sc
2
0

ω2
e−iksxgeiqs(zg+zs)D′(xg, zg, ks, zs, ω). (17)

D′ should be thought of as the measured data, pre-processed as above to produce D. Equations
(16) are the heart of the inversion, and, c.f. Innanen and Weglein (2007), the variability of W with
temporal frequency for any given spectral component of the model parameters α1 and β1 determines
the conditioning of the problem. In the linear steps in this paper we regularly use concepts and
changes-of-variable as described by Clayton and Stolt (1981). Defining the depth wavenumber over
which our perturbations are to be solved to be kz = −2qs, the equations become

D(ks, ω) = α1(kz) +W (ω)β1(kz). (18)

At this stage we have several options. Ideally, we would subdivide the data into components
D(kz, θ) and solve the linear problem with sets of angles. However, the (kz, θ) parametrization
turns out to be inconvenient here, as there is no straightforward way of solving for ω(kz, θ). A
more convenient choice, since the data equations are independent directly in terms of ω already, is
to change variables from D(ks, ω) to D(kz, ω), and solve at each kz using a set of N > 2 frequencies.
To proceed in this way, we need to know what ks value is associated with a particular pair kz, ω.
From the plane wave geometry we have

k2
s + q2s =

ω2

c20

[
1 +

F (ω)
Q0

]2

, (19)

hence

ks(kz, ω) =

√
ω2

c20

[
1 +

F (ω)
Q0

]2

− k2
z

4
. (20)

We then have the following prescription for performing the linear inversion:
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1. From experimental geometry, sampling intervals, etc., determine a suitable (complex) wavenum-
ber vector kz.

2. Find in the data D′(kz, ω) =
∫ ∫

dtdxse
−iωte

−i
r

ω2

c20

h
1+

F (ω)
Q0

i2
− k2

z
4
xs

D′(xs, t).

3. Process from D′ → D using reference medium quantities and equation (17).

4. Now D(kz, ω) = α1(kz) +W (ω)β1(kz) holds; solve for α1 and β1 for each kz using pairs (or
larger sets) of frequencies ω1 and ω2.

5. Calculate α1(z|ω1, ω2) = 1
2π

∫
dkze

ikzzα1(kz|ω1, ω2) and β1(z|ω1, ω2)
= 1

2π

∫
dkze

ikzzβ1(kz|ω1, ω2). This is expected to be an unstable process, and the requirement
of some dampening of large kz values should be anticipated, especially in the presence of
noise.

Presently we will use this linear inverse prescription to develop a linear Q compensation algorithm.
First, however, let us briefly examine its direct use. Consider the purely acoustic model in the left
panel of Figure 1. If we perform a linear acoustic inversion on the primaries reflecting from this
model (see the non-bold profile in the bottom panel of Figure 3), we have an input ready for, e.g.,
the direct non-linear inversion algorithm of Shaw et al. (2004). However, if we embed this same
velocity model in a homogeneous background absorptive medium with reference Q0 = 50 (right
panel of Figure 1), and perform the same (acoustic) inversion (top panel of Figure 3), the results
are predictably distorted, and are inappropriate for use as input to Shaw’s algorithm. However,
assuming we have in hand the correct Q value for the background medium, which we do in this part
of the paper, the above prescription1 generates the linear wavespeed perturbation α1 displayed in
the middle and bottom panels of Figure 3. In the bottom panel the result is compared to the purely
acoustic problem. This forms an input again appropriate for (e.g.) direct non-linear imaging.

In creating these results, we have employed a straightforward stabilization of the inverse transform
by which we produce, e.g., α1(z|ω1, ω2) from the data. Its effect will be noted in the forthcoming
numerical examples, so let us first describe how it works. Consider one of the problematic integrals:

α1(z|ω1, ω2) =
1
2π

∫
dkze

ikzzα1(kz|ω1, ω2). (21)

The wavenumber kz has a negative imaginary component, hence the integral requires that α1(kz|ω1, ω2)
diminish with kz at least as rapidly as this exponential grows. The part of α1 that agrees with wave
theory does so, if we have our reference medium properties correct, but any noise (for instance)
almost certainly does not. Hence, even the bandlimited versions of it we consider are unstable.
We define a taper function that has two components: (1) a gate function that truncates eikzz at a
specified kz value, that is (2) smooth by convolution with a Gaussian with a specified variance. The
latter “shoulder” suppresses ringing of the stabilized solution. The integral is evidently also more
unstable for large values of z. Hence, we make the cutoff kz value a linearly decreasing function of

1Since we restrict ourselves in this numerical example to perturbations in wavespeed only, i.e., β = 0, the inversion
is well-posed for normal incidence data.
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depth, with the slope of this determined empirically for a given reference Q value. We will include
specifics of the stabilization with each example to follow.

The Q compensation arises straightforwardly from the above inversion procedure – we simply map
the corrected α1, β1 results linearly back to time using acoustic Green’s functions. We begin with
an example with the same geometry as that of Figure 1, but with a smaller contrast c1 = 1510m/s,
c2 = 1520m/s, and a homogeneous reference medium of c0 = 1500m/s and Q0 = 100. The process
is stabilized with the gate illustrated in Figure 4. The results are illustrated in Figure 5. In the
top panel, we illustrate (in black) the input primary data plotted against the equivalent data (in
red) that would have been measured if Q0 → ∞. The data is processed using the AD linear
inverse equations, and re-mapped to data space using non-absorptive Green’s functions otherwise
identical to those used in the inverse step. The output is illustrated in the middle panel (in
black), again plotted against the un-attenuated data set. The results differ from the benchmark
“perfect” result, particularly in the lower corrected primary. However, this is full attributable to
the tapering/stabilization, as we can see in the bottom panel when we compare the output with
an equivalently tapered version of the un-attenuated data. In Figures 6–7 we repeat the procedure
for a lower Q value.
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Figure 1: Synthetic model used to illustrate the direct use of linear A-D equations with an absorptive ref-
erence medium. Left panel: a two-interface acoustic constant density profile. Right panel: the
same model embedded in a homogeneous absorptive background characterized by Q0 = 50.
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Figure 2: Synthetically generated primary data. Top panel: primaries associated with the right-panel model
in Figure 1. Bottom panel: primaries associated with the left-panel model in Figure 1.
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Figure 3: A comparison of linear inversion results. Top panel: an example of what happens if we treat data
from the top panel of Figure 2 with an acoustic linear inversion procedure (bold solid), plotted
vs. the actual velocity perturbation. Not surprisingly, in addition to the amplitude and location
problems to be corrected by non-linear direct inverse algorithms, the resolution of the reflectors
is badly compromised. Middle panel: the linearized inversion of the data from the top panel of
Figure 2, using the AD equations of this section (bold solid), again compared against the actual
velocity perturbation. This time the results are suitable for input to, e.g., the imaging algorithm
of Shaw et al. (2004). This is confirmed in the bottom panel, where we see that this output (again,
bold solid) is very close to the linearized inversion of the acoustic data in the bottom panel of
Figure 2 (plain solid).
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Figure 4: Stabilization of Q compensation. Top panel: smoothed gate functions are defined to truncate the
influence of large kz values, stabilizing the procedure at the expense of resolution. Bottom panel:
the width of the taper is made a linear function of depth, with the slope chosen empirically. In
both panels, in blue is the taper at the depth of the shallow primary, and in red is the taper at
the depth of the deeper primary.
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Figure 5: Results of the direct linear Q compensation procedure for background Q = 100. Top panel:
input data (black) compared to an equivalent data set constructed in the absence of Q (red).
Middle panel: corrected data (black) compared to un-attenuated data (red); differences due to the
stabilizing taper. Bottom panel: corrected data compared to tapered un-attenuated data (red).
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Figure 6: Stabilization of Q compensation. Top panel: smoothed gate functions are defined to truncate the
influence of large kz values, stabilizing the procedure at the expense of resolution. Bottom panel:
the width of the taper is made a linear function of depth, with the slope chosen empirically. In
both panels, in blue is the taper at the depth of the shallow primary, and in red is the taper at
the depth of the deeper primary.
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Figure 7: Results of the direct linear Q compensation procedure for background Q = 50. Top panel: input
data (black) compared to an equivalent data set constructed in the absence of Q (red). Mid-
dle panel: corrected data (black) compared to un-attenuated data (red); differences due to the
stabilizing taper. Bottom panel: corrected data compared to tapered un-attenuated data (red).
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3 Direct non-linear Q-compensation

We next consider the opposite end of the range of Q-compensation algorithms derivable from inverse
scattering. We attempt to derive algorithms that take full advantage of the inverse scattering series
ability to perform inverse tasks using only reference medium properties and data (Weglein et al.,
2003). If the reference and actual media differ signficantly, it follows that all resulting procedures
occur in the absence of accurate prior medium information. The price of this desirable set of
properties is stringent data requirements and algorithms that are highly non-linear. In the coming
section, we will see how these general ideas play out in application to the absorption compensation
problem.

Approach

The inverse scattering series in its pristine form takes as its input measurements of a scattered
field, and creates as its output the perturbation that gave rise to the field. This runs counter to
the goals of Q-compensation as stated in the introduction, because:

1. The scattered field in general contains all reflected events, including primaries and multiples,
whereas we (having effective techniques for multiple suppression at hand) wish to perform
inverse operations on primaries only;

2. Of all the processing steps enacted upon primaries within the full inverse problem, we wish
one only, the correction for absorptive propagation, to actually be carried out;

3. We wish to estimate not the perturbation, a model-like quantity, but, rather, a data-like
quantity, a set of reflected primaries that have been Q-compensated.

After posing the scattering problem to accommodate absorptive media, most of the strategy in the
algorithm development we present is geared towards managing these three differences between our
wishes and those of inverse scattering. Our route is as follows.

We begin by creating a forward model for absorptive-dispersive primaries based on the Born se-
ries. The result is a non-linear scattering-based series calculation of primaries only in a layered
absorptive-dispersive medium, which is accurate for large, extended perturbations. This is useful,
because it turns out that such partial series may be inverted, order-by-order, in exactly the same
fashion as the full inverse scattering series, generating non-linear direct inversion procedures for
primaries only. We continue, then, by carrying out this inversion upon the absorptive-dispersive
primary series above. The resulting non-linear inverse scattering equations, which construct ap-
proximations of the actual wavespeed and Q perturbations in the medium, are of a form that
addresses item (1.) above.

We next note that, because of the direct, analytical nature of the above inverse equations, it is
clear where, and how, in the data-driven operations the correction for Q takes place. It is also clear
how to suppress all of the other non-linear data operations. Doing so amounts to an extraction and

262



Towards a comprehensive inverse scattering framework for Q-compensation MOSRP07

separate execution of the Q-compensation part of the full inversion of primary data; this addresses
item (2.) above.

Finally, we point out that, given a homogeneous reference medium, the relationship between the
linear components of the parameter perturbations and the data is very simple: essentially a Fourier
transform. In the above procedure, all non-linear aspects of the processing, apart from those
that are Q-related, have been suppressed. It follows that in all respects apart from absorption,
the output maintains a simple, linear relationship with the data. We map this output trivially
back to data-space. The final result, which has addressed item (3.) above, is deemed to be the
Q-compensated data set.

Direct non-linear Q compensation

What follows is a skeletal derivation of our candidate scheme for direct, non-linear Q compensation;
details are included in the Appendices. Using the definitions and quantities in Case I of the
introduction, we construct the absorptive-dispersive scattering problem, restricting the medium
such that α and β vary in depth only. Following the approach described above, we next form a
partial Born series:

ψP = ψ1 + ψ2 + ψ3..., (22)

whose terms are adjudged, via arguments based on relative scattering geometry (Innanen, 2005),
to construct reflected primaries that have been distorted by Q. At first order, for instance, we have

ψ1(ks, ω) =
∫
dx′
∫
dz′G0(xg, zg, x′, z′, ω)k2γ(z′)G0(x′, z′, ks, zs, ω)

= − 1
4 cos2 θ

∫
dz′ei2qsz

′
γ(z′),

where

γ(z) = α(z)− 2F (ω)β(z),

and θ = sin−1 ksc0
ω , and we have set xg = zg = zs = 0. For another instance, at second order, we

have

ψ2(ks, ω) = −(−i2qs)
8 cos4 θ

∫
dz′ei2qsz

′
γ(z′)

(∫ z′

dz′′γ(z′′)

)
.

Continuing the partial summation at all orders we produce a series for attenuated primaries, ψP ,
which we associate with the measured data D ≡ ψP :

D(ks, ω) =
−1

4 cos2 θ

∫
dz′ei2qsz

′
γ(z′)

×
∞∑
n=0

1
n!

(
−iqs
cos2 θ

∫ z′

dz′′γ(z′′)

)n
.

(23)
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Computing and summing a large number of these terms generates an analytic expression for the
primary data. The full details of the derivation are presented in Appendix A. We next form an
inverse series for the perturbations α and β, in which the n’th term is defined to be n’th order in the
primary data modeled above. The full derivation and discussion of this is presented in Appendix
B. Here we will describe some salient aspects of it. We let this series be

[α(z)− 2F (ω)β(z)]
= [α1(z)− 2F (ω)β1(z)] + [α2(z)− 2F (ω)β2(z)] + ... .

This is substituted into equation (35), and like orders are equated (Innanen, 2005), similarly to
Carvalho’s derivation of the full inverse scattering series (Carvalho, 1992). At first order, we have

D(ks, ω) =
−1

4 cos2 θ

∫
dz′ei2qsz

′
[α1(z′)− 2F (ω)β1(z′)]. (24)

Innanen and Weglein (2007) describe in detail how this equation may be used to determine α1 and
β1 as functions of pseudo-depth, as well as sets of incidence angles ϑ, and any desired weighting W .
Importantly for what follows, the quantities α1 and β1 are interpretable as being either “model-
like”, if the actual perturbations are small and transient, and some scheme (e.g., Clayton and Stolt,
1981) of averaging is invoked to deal with the over-determinedness of the problem, or alternatively
“data-like”, if the perturbation is large and extended, and maximal variability of α1 and β1 with
experimental variables is retained. Since we have chosen a homogeneous reference and are concerned
with instances of large, extended perturbations, we are in the latter regime. It is accurate, therefore,
to think of the α1, β1 quantities as being essentially linearly transformed and weighted versions of
the input primary data.

At second order, we have

1
4 cos2 θ

∫
dz′ei2qsz

′
[α2(z′|ϑ,W )− 2F (ω)β2(z′|ϑ,W )]

=− [−i2qs]
8 cos4 θ

∫
dz′ei2qsz

′
[α1(z′|ϑ,W )− 2F (ω)β1(z′|ϑ,W )]

×

(∫ z′

0
dz′′[α1(z′′|ϑ,W )− 2F (ω)β1(z′′|ϑ,W )]

)
.

In α1(z′|ϑ,W ) and β1(z′|ϑ,W ) we have now explicitly included their dependence on incidence
angles and weights; we point out that consequently, the second order terms α2 and β2 must also
be functions of these quantities.

As we continue to higher orders, a pattern in the mathematics is discernible, that allows the
n’th order equation to be straightforwardly predicted. Summing over all orders (by assuming the
continuation of this pattern ad infinitum), and defining

αP (z|ϑ,W ) ≡
∞∑
n=0

αn+1(z|ϑ,W ),

βP (z|ϑ,W ) ≡
∞∑
n=0

βn+1(z|ϑ,W ),
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there results a closed form set of non-linear equations

αP (kz, θ|ϑ,W )− 2F (kz, θ)βP (kz, θ|ϑ,W )

=
∫
dz′e

−ikz

h
z′+ 1

2 cos2 θ

R z′
0 dz′′[α1(z′′|ϑ,W )−2F (kz ,θ)β1(z′′|ϑ,W )]

i

× [α1(z′|ϑ,W )− 2F (kz, θ)β1(z′|ϑ,W )],

(25)

where again kz ≡ −2qs. This represents a complete inversion of the primary data (to within
the accuracy of the primary approximation series in equation 35 in Appendix A), for a layered,
2-parameter, absorptive-dispersive medium. The quantities αP and βP are the non-linearly deter-
mined profiles associated with c(z) and Q(z). Each can be independently determined via equation
(25), as is demonstrated in detail in Appendix C. This may be of independent interest.

However, our current goal is to accomplish a single inverse task, that of compensating for Q. To
do this, we examine equation (25) more closely. We notice that the outputs, αP and βP , would be
related linearly to the inputs, α1 and β1, except that α1 and β1 also appear in the argument of the
exponential function in the integrand. We then make the following empirical statements. The role
of α1 in the argument of the exponential is to non-linearly process the input to accomplish tasks
associated with wavespeed deviations between the reference and actual media (i.e., imaging). And,
the role of β1 in the argument is to accomplish Q related tasks, i.e., compensation. We peremptorily
set α1 in the argument to zero, and argue that as a consequence: (1) the (now altered) outputs αP
and βP undergo non-linear correction for the attenuation and dispersion associated with Q, but (2)
they undergo linear treatment in all other respects.

Calling the partially treated outputs αQ and βQ, we have instead

αQ(kz, θ|ϑ,W )− 2F (kz, θ)βQ(kz, θ|ϑ,W )

=
∫
dz′e

−ikz

h
z′−F (kz,θ)

cos2 θ

R z′
0 dz′′β1(z′′|ϑ,W )]

i

× [α1(z′|ϑ,W )− 2F (kz, θ)β1(z′|ϑ,W )].

(26)

By assumption, within these equations only Q-compensation takes place as the data is processed.
Finally, we will argue for an approach to make the output of this processing a data-like quantity.
Equation (26) follows the basic template

A =
∫
eBC. (27)

By comparing this template (and equation 26) to the components of equation (24), it is evident
that both A and C already have a strongly data-like aspect, with C representing the input and
A representing the output, “processed,” data. Even B shares this appearance, albeit with the α1

component suppressed. It is, therefore, accurate to view the output data-like quantity A as being
the consequence of weighted forms of the data (B) operating non-linearly upon themselves (C).

After constructing the input C and the operator B by linearly transforming and weighting the
data, we apply equation (26), and, finally, use the relationship in equation (24) to map back to
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the (ks, ω) domain, through, in essence, a change of variables. Our suggestion is that this mapped
quantity is a Q-compensated data set, in the sense of our introductory definition.

To exemplify this procedure, we construct a simple synthetic primary data set corresponding to the
two-interface absorptive-dispersive model in Figure 8. The resulting primary data (Figure 9, upper
panel) is used as input to the linear inverse scattering equations, which involves a transformation and
weighting thereof. This synthetic is then used to construct both the operator eB and the operand C
as in equation (27). The Q-compensated data set (Figure 9, lower panel) is formed by transforming
the result, A in equation (27), to the (ks, ω) domain, and then performing straightforward inverse
Fourier transforms. The Q-compensated results are compared in detail with the input in Figure
10 for three offsets, 0m, 110m, and 225m. We see high-quality results, albeit with slight under-
correction at large angle.

In equation (26) there are two sets of angles: an input set (ϑ) that has been used in the linear
step, in particular to construct the correction operator, and an output angle θ, which is varied to
recover the full pre-stack data set. Empirically we have found that using sets of input angles ϑ
which “cluster” around the output angle θ produces the best results. In the examples we present
here, a ϑ = {θ, θ + ∆θ} was used for each θ of corrected data.

Noisy examples have not been included at this proof-of-concept stage; we have found our approach
to share the basic response to noise of all standard Q compensation schemes. We point out that (as
is often done) with a quick alteration to the function F as it appears in the argument in equation
(25) we can transform this algorithm immediately into a “dispersion compensation” algorithm,
which is well-conditioned and largely unaffected by noise.
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Figure 8: Two interface absorptive-dispersive model.
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Figure 9: Top panel: synthetic pre-stack input primary data from the model in Figure 8 (decimated for
purposes of display); bottom panel: Q-compensated output data (likewise decimated).
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Figure 10: Detail of Q compensation for three offsets of pre-stack data. Bottom trace in each panel is
input, the middle trace is the output, and the top trace, for benchmarking, is an idealized trace
constructed without Q, and normalized to the maximum value of the output traces.
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Discussion and conclusions

We choose as the definition of Q compensation, the estimation of an output data set that is identical
to the input, except that all absorptive propagation effects are absent. We present two candidate
schemes, based on linear and non-linear inverse scattering, whose output, we argue, fits this defi-
nition. In the non-linear algorithm, for which an accurate prior estimate of the Q structure of the
medium is not required, a correction operator is automatically constructed from the data them-
selves, with minimal influence of or requirement for prior information. Synthetic examples illustrate
the scheme in action, and are a compelling proof-of-concept result. We have made two rational,
but intuitive, assumptions in deriving the scheme:

1. That, by suppressing certain components of the full non-linear inversion equations derived
from inverse scattering, we completely isolate the Q compensation action inherent to the
inversion.

2. That, with trivial linear transformation and changes of variable, the output of these inverse
steps can be treated as an equivalent data set, different only from the input in the lack of
absorption in the primary events.

We feel that the soundness of these steps is best argued for with success in testing, some of which
we have provided with our proof-of-concept example.

Direct, non-linear methods bring a greatly reduced requirement for prior information as com-
pared to their linear counterparts. But they demand broadband, densely sampled, wide-aperture,
de-ghosted, deconvolved (of the source wavelet), and demultipled data in return. Data quality,
bandwidth and coverage are the first requirements in considering methods such as this one.

The data set used in the above examples is broad-band, and includes low (sub-Hz) frequencies
(although not close to zero frequency–the nearly constant Q model we are using in fact diverges at
and near that limit). The requirement for this kind of data is typical of non-linear, wave theoretic
inverse methods. The best outcome will result from actual acquisition of maximally low frequency
data, of course; however, various assumptions, for instance that of a piecewise-constant overburden,
can additionally be made, removing the sensitivity to cut-off of low frequencies.

Two other issues are at the forefront when it comes to contemplating field data application. The
first has to do with the way in which the data are interrogated for information in constructing the
operator (B in equation 27), which is described in detail by Innanen and Weglein (2007). Briefly,
it is the frequency- and angle-dependence of the transmission-altered reflection coefficients of the
primaries (loosely, a brand of AVO behaviour specific to absorptive-dispersive media) that drives
the construction of the operator. That this behavior exists is a straightforward prediction of wave
theory. However, it may appear as very subtle variations in field data. Detecting it is critical to
the use of the method.

The second is a consequence of the algorithm’s interest in amplitude variations in the data. As
it stands, the algorithm considers data to be due to a 2-parameter, absorptive-dispersive, acoustic
medium. When that is true, as in our synthetic examples, the results are of high quality. When
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that is not true, as in a seismic field data application, the results will presumably suffer. One clear
next step is to alter the construction of the corrective operator to be in accordance with a suitable
anelastic (as opposed to an-acoustic) medium model.

Our aim is to build a theoretical framework from within which the user may select a suitable Q
compensation algorithm, that optimally balances the degree of non-linearity (and the computational
expense and sensitivity to data quality that this implies) with the degree of available prior knowledge
of the Q structure (or velocity structure etc.) at hand.
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Appendix A
A scattering model of primaries in layered absorptive-dispersive media

In this appendix we take the scattering quantities defined in the introduction appropriate for
non-absorptive reference media, and use them to construct the first three terms in the absorptive-
dispersive Born series. The relative scattering geometry of these terms is next used to extract a
subset of terms, which are adjudged to construct the absorptive-dispersive primaries. This pattern
is used to deduce the full series expression.

We proceed assuming a non-absorptive reference medium. For plane waves at oblique incidence
(i.e., a non-zero source plane wave angle θ) above a layered AD medium, with reflected waves
detected at a lateral line receiver location xg, the first order term of the Born series is

ψ1(xg, zg, ks, zs, ω) =
∫
dx′
∫
dz′G0(xg, zg, x′, z′, ω)k2γ(z′)G0(x′, z′, ks, zs, ω)

= −1
4
k2

q2s
e−iqs(zg+zs)eiksxg

∫
dz′ei2qsz

′
γ(z′),

(28)

where

γ(z) = α(z)− 2F (ω)β(z). (29)

This term constructs only primaries, and as such is defined as the first order term in the primary
construction series also. For convenience we set xg = zg = zs = 0, and rename the linear term ψ1P ,
which has the form

ψ1P (ks, ω) = − 1
4 cos2 θ

∫
dz′ei2qsz

′
γ(z′). (30)

The second order term of the Born series is also needed in its entirety in the primary approximation.
We have

ψ2(xg, zg, ks, zs, ω) =
∫
dx′
∫
dz′G0(xg, zg, x′, z′, ω)k2γ(z′)

×
∫
dx′′

∫
dz′′G0(x′, z′, x′′, z′′, ω)k2γ(z′′)G0(x′′, z′′, ks, zs, ω),

(31)

thus, again with xg = zg = zs = 0,

ψ2P (ks, ω) = − 1
16 cos4 θ

(−i2qs)
∫
dz′eiqsz

′
γ(z′)

∫
dz′′eiqs|z

′−z′′|γ(z′′)eiqsz
′′

= − 1
8 cos4 θ

(−i2qs)
∫
dz′ei2qsz

′
γ(z′)

(∫ z′

dz′′γ(z′′)

)
.

(32)

At third order, we begin with the full Born series term

ψ3(ks, ω) = − 1
64 cos6 θ

(−i2qs)2
∫
dz′eiqsz

′
γ(z′)

∫
dz′′eiqs|z

′−z′′|γ(z′′)
∫
dz′′′eiqs|z

′′−z′′′|γ(z′′′)eiqsz
′′′
,

(33)
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but reject the component for which the “middle” scattering location z′′ is shallower than both z′

and z′′′, which has been adjudged to begin the construction of multiples (Weglein et al., 1997).
This means rejecting 1 of the 4 components of equation (33) that arise when the absolute value
bars are evaluated case-wise. Retaining the other three components, we have

ψ3P (ks, ω) = − 1
64 cos6 θ

(−i2qs)2
∫
dz′ei2qsz

′
γ(z′)

∫ z′

dz′′γ(z′′)
∫ z′′

dz′′′γ(z′′′)

= − 1
32 cos6 θ

(−i2qs)2
∫
dz′ei2qsz

′
γ(z′)

(∫ z′

dz′′γ(z′′)

)2

,

(34)

where again for convenience xg = zg = zs = 0 (for cases involving non-zero source receiver depths,
or several xg values, the simple exponential factors outside the integrals may be easily re-instated).
The pattern visible from orders 1–3 persists at higher order. Summing all of terms that fit the same
pattern creates an approximation of primaries appropriate for large, extended absorptive-dispersive
perturbations. The approximation error that arises in this expression at very large perturbation
sizes is due to terms at third order and beyond whose scattering geometry fits the criteria for
retention, but which are not reproduced by this formula. Calling the approximation ψP , we have

ψP (ks, ω) =
∞∑
n=0

ψnP (ks, ω)

= − 1
4 cos2 θ

∫
dz′ei2qsz

′
γ(z′)

∞∑
n=0

1
n!

(
− iqs

cos2 θ

∫ z′

dz′′γ(z′′)

)n
.

(35)

This may be summed to closed form, as was done in direct non-linear imaging by Shaw et al. (2004):

ψP (ks, ω) = − 1
4 cos2 θ

∫
dz′e

i2qs
h
z′−(1/2) cos−2 θ

R z′ dz′′γ(z′′)
i
γ(z′). (36)

In this paper, the summed form is of less significance, since our aim will be to perform an order
by order inversion. As the key result of this appendix, then, we have the series in equation (35),
explicitly in terms of the wavespeed and Q perturbations α and β, respectively, given by

ψP (ks, ω) =
∫
dz′

ei2qsz
′

4 cos2 θ
[2F (ω)β(z′)− α(z′)]

∞∑
n=0

1
n!

(
iqs

cos2 θ

∫ z′

dz′′[2F (ω)β(z′′)− α(z′′)]

)n
.

(37)
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Appendix B
Direct non-linear absorptive-dispersive inversion equations for layered media

In this appendix we perform a direct, order-by-order inversion of the absorptive-dispersive primary
approximation derived in Appendix A. We assume that the data (1) contain only primaries, (2)
have been deconvolved of the source wavelet, and (3) have been deghosted. These assumptions
are typical for direct non-linear primary algorithms based on the inverse scattering series (Weglein
et al., 2003). If this is the case, and if the perturbations α and β are of such a size and extent that
equation (37) is accurate, we may write

D(ks, ω)

=− 1
4 cos2 θ(ks, ω)

∫
dz′ei2qs(ks,ω)z′ [α(z′)− 2F (ω)β(z′)]

− [−i2qs(ks, ω)]
8 cos4 θ(ks, ω)

∫
dz′ei2qs(ks,ω)z′ [α(z′)− 2F (ω)β(z′)]

(∫ z′

0
dz′′[α(z′′)− 2F (ω)β(z′′)]

)

− [−i2qs(ks, ω)]2

32 cos6 θ(ks, ω)

∫
dz′ei2qs(ks,ω)z′ [α(z′)− 2F (ω)β(z′)]

(∫ z′

0
dz′′[α(z′′)− 2F (ω)β(z′′)]

)2

+ ...,

(38)

where θ and qs are particular arrangements of experimental variables ks and ω:

θ = sin−1 ksc0
ω

,

qs =
ω

c0

√
1− k2

sc
2
0

ω2
.

(39)

The aim in the remainder of this appendix will be to directly invert equation (38).

An inverse series for absorptive-dispersive primaries

We form an inverse series for the perturbations α and β, in which the n’th term is defined to be
n’th order in the primary data modeled in equation (37). Let this series be

[α(z)− 2F (ω)β(z)]
= [α1(z)− 2F (ω)β1(z)] + [α2(z)− 2F (ω)β2(z)] + [α3(z)− 2F (ω)β3(z)] + ... .

(40)

This is substituted into equation (38), and like orders are equated (Innanen, 2005), in a manner
similar to Carvalho’s derivation of the full inverse scattering series (Carvalho, 1992). At first order
we have

D(ks, ω) = − 1
4 cos2 θ(ks, ω)

∫
dz′ei2qs(ks,ω)z′ [α1(z′)− 2F (ω)β1(z′)]. (41)
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At second order, we have

1
4 cos2 θ(ks, ω)

∫
dz′ei2qs(ks,ω)z′ [α2(z′)− 2F (ω)β2(z′)]

= − [−i2qs(ks, ω)]
8 cos4 θ(ks, ω)

∫
dz′ei2qs(ks,ω)z′ [α1(z′)− 2F (ω)β1(z′)]

(∫ z′

0
dz′′[α1(z′′)− 2F (ω)β1(z′′)]

)
.

(42)

At third order, we have

1
4 cos2 θ(ks, ω)

∫
dz′ei2qs(ks,ω)z′ [α3(z′)− 2F (ω)β3(z′)]

=− [−i2qs(ks, ω)]
8 cos4 θ(ks, ω)

∫
dz′ei2qs(ks,ω)z′ [α1(z′)− 2F (ω)β1(z′)]

(∫ z′

0
dz′′[α2(z′′)− 2F (ω)β2(z′′)]

)

− [−i2qs(ks, ω)]
8 cos4 θ(ks, ω)

∫
dz′ei2qs(ks,ω)z′ [α2(z′)− 2F (ω)β2(z′)]

(∫ z′

0
dz′′[α1(z′′)− 2F (ω)β1(z′′)]

)

− [−i2qs(ks, ω)]2

32 cos6 θ(ks, ω)

∫
dz′ei2qs(ks,ω)z′ [α1(z′)− 2F (ω)β1(z′)]

(∫ z′

0
dz′′[α1(z′′)− 2F (ω)β1(z′′)]

)2

.

(43)

This continues. Just as in the full inverse scattering series, the sequential direct solution for each
term, followed by their summation, produces the desired solution. Experience with the cascaded
series that have been required to deal with the direct imaging of primaries (e.g., Weglein et al., 2003;
Shaw et al., 2004), indicates that several tens of such terms will be required. Hence our approach
will be to carry out the inversion explicitly on the first three orders only, thereafter attempting to
deduce a pattern that holds over all orders.

First order

The construction of the first order components of the absorptive-dispersive perturbations α1 and
β1 from the data (i.e., the solution of equation (41)), and the resulting issues of conditioning,
detectability, and relationships with the actual medium perturbations, have been described in
detail by Innanen and Weglein (2007), and will not be extensively reviewed here. Briefly put, two
profiles, α1(z|ϑ,W ) and β1(z|ϑ,W ), over layered absorptive-dispersive media, may be constructed
given a single shot-record or receiver record of reflected primary data and the acoustic reference
wavespeed c0, which is assumed to agree with the actual medium at and above the sources and
receivers. Since two or more plane wave incidence angles are required to construct the profiles, but
many varied sets of these angles may be sufficient to do so, we define the quantity ϑ = {θ1, θ2, ...}
to represent the particular set of angles used. In addition, since the freedom also exists to weight
the data at each angle, we define W to represent the particular weighting scheme (if any) chosen.
The profiles are then functions of these quantities also.
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Summarizing, we establish a mapping between

D(ks, ω) → α1(z|ϑ,W ),
D(ks, ω) → β1(z|ϑ,W ).

(44)

The mapping is simple, generally a linear combination of Fourier components of the data.

Second order

The second order term in equation (42) is already very close to the form we will find suitable for the
eventual direct non-linear inverse equations. However, we make two comments. First, since all of
the above relationships are expected to hold for all ks and ω, by comparing integrands in equation
(42), we see that instances of α2 − Fβ2 occurring under Fourier integrals may be replaced by

α2(z)− 2F (ω)β2(z) = − [−i2qs(ks, ω)]
2 cos2 θ(ks, ω)

[α1(z)− 2F (ω)β1(z)]
(∫ z

0
dz′[α1(z′)− 2F (ω)β1(z′)]

)
.

(45)

This will be useful for manipulations at third order. Second, we change variables to θ and kz = −2qs:∫
dz′e−ikzz′ [α2(z′|ϑ,W )− 2F (kz, θ)β2(z′|ϑ,W )]

=
−ikz

2 cos2 θ

∫
dz′e−ikzz′ [α1(z′|ϑ,W )− 2F (kz, θ)β1(z′|ϑ,W )]

×

(∫ z′

0
dz′′[α1(z′′|ϑ,W )− 2F (kz, θ)β1(z′′|ϑ,W )]

)
,

(46)

where we have employed the specific forms for α1 and β1 derived above, including the set of angles
ϑ and weights W . Since the first order input to the second order term has these dependences, so
also must the second order perturbations α2 = α2(z|ϑ,W ), β2 = β2(z|ϑ,W ).
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Third order

The third order problem requires a greater level of manipulation. The middle two terms in equation
(43) may be re-written

− [−i2qs(ks, ω)]
8 cos4 θ(ks, ω)

∫
dz′ei2qs(ks,ω)z′ [α1(z′)− 2F (ω)β1(z′)]

(∫ z′

0
dz′′[α2(z′′)− 2F (ω)β2(z′′)]

)

− [−i2qs(ks, ω)]
8 cos4 θ(ks, ω)

∫
dz′ei2qs(ks,ω)z′ [α2(z′)− 2F (ω)β2(z′)]

(∫ z′

0
dz′′[α1(z′′)− 2F (ω)β1(z′′)]

)

= +
[−i2qs(ks, ω)]2

32 cos4 θ(ks, ω)

∫
dz′ei2qs(ks,ω)z′ [α1(z′)− 2F (ω)β1(z′)]

(∫ z′

0
dz′′[α1(z′′)− 2F (ω)β1(z′′)]

)2

+
[−i2qs(ks, ω)]2

16 cos4 θ(ks, ω)

∫
dz′ei2qs(ks,ω)z′ [α1(z′)− 2F (ω)β1(z′)]

(∫ z′

0
dz′′[α1(z′′)− 2F (ω)β1(z′′)]

)2

.

(47)

The second of these re-written forms is immediate; to derive the first, we have used the fact that
for any integrable function f ,∫ z

−∞
f(z′)

∫ z′

−∞
f(z′′)dz′′dz′

=
∫ z

−∞

d

dz′

(∫ z′

−∞
f(z′′)dz′′

)∫ z′

−∞
f(z′′)dz′′

=
1
2

∫ z

−∞

d

dz′

(∫ z′

−∞
f(z′′)dz′′

)2

dz′

=
1
2

(∫ z

−∞
f(z′)dz′

)2

.

(48)

The two terms in equation (47) are, then, of the same form, and sum to produce

+
3[−i2qs(ks, ω)]2

32 cos6 θ(ks, ω)

∫
dz′ei2qs(ks,ω)z′ [α1(z′)− 2F (ω)β1(z′)]

(∫ z′

0
dz′′[α1(z′′)− 2F (ω)β1(z′′)]

)2

.

This expression is, in turn, of the same form as that of the last term in equation (43), and so the
third order inverse equation may be re-expressed in full as

1
4 cos2 θ(ks, ω)

∫
dz′ei2qs(ks,ω)z′ [α3(z′)− 2F (ω)β3(z′)]

=
[−i2qs(ks, ω)]2

16 cos6 θ(ks, ω)

∫
dz′ei2qs(ks,ω)z′ [α1(z′)− 2F (ω)β1(z′)]

(∫ z′

0
dz′′[α1(z′′)− 2F (ω)β1(z′′)]

)2

.

(49)
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Simplifying, and changing variables to kz and θ, we have∫
dz′e−ikzz′ [α3(z′|ϑ,W )− 2F (kz, θ)β3(z′|ϑ,W )]

=
[−ikz]2

4 cos4 θ

∫
dz′e−ikzz′ [α1(z′|ϑ,W )− 2F (kz, θ)β1(z′|ϑ,W )]

×

(∫ z′

0
dz′′[α1(z′′|ϑ,W )− 2F (kz, θ)β1(z′′|ϑ,W )]

)2

.

(50)

Again, since at first and second orders the outputs are functions of the set of angles and weights
used in the first order procedure, so must the third order terms, i.e., α3 = α3(z′|ϑ,W ) and β3 =
β3(z′|ϑ,W ).

Direct non-linear absorptive-dispersive inversion equations

Examining equations (46) and (50), we see two things of interest. First, the results are an exact, full
inversion of the primary approximation from the previous appendix. Second, within these inversion
terms, a pattern is noticeable, whose form persists at higher order. In fact, αn+1 and βn+1 are
related to α1 and β1 via∫

dz′e−ikzz′ [αn+1(z′|ϑ,W )− 2F (kz, θ)βn+1(z′|ϑ,W )]

=
1
n!

(
−ikz

2 cos2 θ

)n ∫
dz′e−ikzz′ [α1(z′|ϑ,W )− 2F (kz, θ)β1(z′|ϑ,W )]

×

(∫ z′

0
dz′′[α1(z′′|ϑ,W )− 2F (kz, θ)β1(z′′|ϑ,W )]

)n
.

(51)

Let us define

αP (z|ϑ,W ) ≡
∞∑
n=0

αn+1(z′|ϑ,W ),

βP (z|ϑ,W ) ≡
∞∑
n=0

βn+1(z′|ϑ,W ),

(52)

bearing in mind that these sums produce quantities that are functions not only of depth z, but
also of the set of angles ϑ and the weights W that were originally used to construct the linear
components α1 and β1. If we create an instance of equation (51) for every value of n ≥ 0 and add
them together, the left-hand side becomes

∞∑
n=0

∫
dz′e−ikzz′ [αn+1(z′|ϑ,W )− 2F (kz, θ)βn+1(z′|ϑ,W )]

=
∫
dz′e−ikzz′ [αP (z′|ϑ,W )− 2F (kz, θ)βP (z′|ϑ,W )],

(53)
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and the right-hand side becomes

∞∑
n=0

1
n!

(
−ikz

2 cos2 θ

)n ∫
dz′e−ikzz′ [α1(z′|ϑ,W )− 2F (kz, θ)β1(z′|ϑ,W )]

×

(∫ z′

0
dz′′[α1(z′′|ϑ,W )− 2F (kz, θ)β1(z′′|ϑ,W )]

)n
=
∫
dz′e−ikzz′ [α1(z′|ϑ,W )− 2F (kz, θ)β1(z′|ϑ,W )]

×
∞∑
n=0

1
n!

(
−ikz

2 cos2 θ

∫ z′

0
dz′′[α1(z′′|ϑ,W )− 2F (kz, θ)β1(z′′|ϑ,W )]

)n
=
∫
dz′e

−ikz

h
z′+ 1

2 cos2 θ

R z′
0 dz′′[α1(z′′|ϑ,W )−2F (kz ,θ)β1(z′′|ϑ,W )]

i
[α1(z′|ϑ,W )− 2F (kz, θ)β1(z′|ϑ,W )],

(54)

where in the last step we have performed the collapsing step of Shaw et al. (2004). Equating these
two expressions:∫

dz′e−ikzz′ [αP (z′|ϑ,W )− 2F (kz, θ)βP (z′|ϑ,W )]

=
∫
dz′e

−ikz

h
z′+ 1

2 cos2 θ

R z′
0 dz′′[α1(z′′|ϑ,W )−2F (kz ,θ)β1(z′′|ϑ,W )]

i
[α1(z′|ϑ,W )− 2F (kz, θ)β1(z′|ϑ,W )],

(55)

we form the basic underlying equations of direct non-linear inversion for absorptive-dispersive pri-
maries.
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Appendix C
Absorptive-dispersive model construction via non-linear direct inversion

The aim in inverse scattering series applications may vary from the construction of spatial distribu-
tions of perturbation quantities (model-like quantities) to the construction of equivalent data sets
(data-like quantities). The direct non-linear primary inversion quantities derived in Appendix B
lend themselves to either goal. In this appendix we will derive the general form of the first of these
constructions for layered, 2-parameter absorptive-dispersive media. They will be of independent
interest to those wishing to directly determine the 2-parameter medium.

We begin with a straightforward manipulation of equation (55). Recognizing the left-hand side as
a Fourier transform, we have

αP (kz)− 2F (kz, θ)βP (kz) = ∆(kz, θ|ϑ,W ), (56)

where we define

∆(kz, θ|ϑ,W ) ≡
∫
dz′e

−ikz

h
z′+ 1

2 cos2 θ

R z′
0 dz′′[α1(z′′|ϑ,W )−2F (kz ,θ)β1(z′′|ϑ,W )]

i

× [α1(z′|ϑ,W )− 2F (kz, θ)β1(z′|ϑ,W )].
(57)

We wish to separately calculate αP and βP at each relevant depth wavenumber kz; given at least two
angles per depth wavenumber kz, this is an over-determined problem. Since over-determinedness
is typically dealt with through a weighted averaging process (e.g., least squares), we will now be
in the business of defining a set of angles and weights to work with. Some notational care will be
required here, because, as we see in the linear quantities α1(z|ϑ,W ) and β1(z|ϑ,W ) in equation
(57), an earlier set of angles and weights, ϑ = {θ1, θ2, ...} and W , is already in play here.

We proceed by defining a new set of angles ϑ̃ = {θ̃1, θ̃2, ...} 6= ϑ and weights W̃ 6= W . The
mathematics of inversion do not require that ϑ̃ and W̃ be related in any way to ϑ and W . During
the construction of the direct Q compensation algorithms in this paper we will argue towards a
relationship, but at present we will consider them distinct and un-related. Consequently, the final
non-linear output must be considered in general to be a function of both.

Given the N > 2 angles that are contained in ϑ̃, equation (56) becomes

F(kz, ϑ̃)
[
αP (kz)
βP (kz)

]
= ∆(kz, ϑ̃|ϑ,W ), (58)

where

F(kz, ϑ̃) =


1 −2F (kz, θ̃1)
1 −2F (kz, θ̃2)
...

...
1 −2F (kz, θ̃N )

 , (59)
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and

∆(kz, ϑ̃|ϑ,W ) =


∆(kz, θ̃1|ϑ)
∆(kz, θ̃2|ϑ)

...
∆(kz, θ̃N |ϑ)

 . (60)

Through whatever choices are made in inverting F(kz, ϑ̃) the new non-linear weights W̃ are brought
in. That is, F−1 = F−1(kz, ϑ̃, W̃ ). Now, this means that the outputs αP and βP are dependent on
kz, but also on (1) the weights and angles used to create the linear output, ϑ and W , and on (2)
the weights and angles used above to create the non-linear output, ϑ̃ and W̃ . That is,[

αP (kz|ϑ̃, W̃ , ϑ,W )
βP (kz|ϑ̃, W̃ , ϑ,W )

]
= F−1(kz, ϑ̃, W̃ )∆(kz, ϑ̃|ϑ,W ). (61)

Finally, profiles may be generated through inverse Fourier transforms:

αP (z|ϑ̃, W̃ , ϑ,W ) =
1
2π

∫
dkze

ikzzαP (kz|ϑ̃, W̃ , ϑ,W ),

βP (z|ϑ̃, W̃ , ϑ,W ) =
1
2π

∫
dkze

ikzzβP (kz|ϑ̃, W̃ , ϑ,W ).
(62)

The freedom to twice choose both the subsets of the data we use, and their weights, during the
calculation of the profiles in equation (62), suggests a large range of types of inverse result is
possible.
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